275edo: Difference between revisions

Created page with "{{Infobox ET}} {{EDO intro|275}} == Theory == If harmonic 5 is used, 275et tends very sharp. It tempers out {{monzo| 24 -21 4 }} (vulture comma) and {{monzo| 19 10 -15 }}..."
 
+RTT table and rank-2 temperaments
Line 5: Line 5:
If harmonic 5 is used, 275et tends very sharp. It tempers out {{monzo| 24 -21 4 }} ([[vulture comma]]) and {{monzo| 19 10 -15 }} ([[trisedodge comma]]) in the 5-limit; [[6144/6125]] and [[10976/10935]] in the 7-limit.  
If harmonic 5 is used, 275et tends very sharp. It tempers out {{monzo| 24 -21 4 }} ([[vulture comma]]) and {{monzo| 19 10 -15 }} ([[trisedodge comma]]) in the 5-limit; [[6144/6125]] and [[10976/10935]] in the 7-limit.  


The 275e val {{val| 275 436 639 772 '''952''' }} being the best, tempers out [[441/440]], [[4000/3993]], [[14700/14641]], and [[19712/19683]]. This can be extended to the 13-limit through [[364/363]], [[676/675]], [[1001/1000]], and [[2080/2079]].  
The 275e val {{val| 275 436 639 772 '''952''' }} being the best, tempers out [[441/440]], [[4000/3993]], [[14700/14641]], and [[19712/19683]]. This can be extended to the 13-limit through [[364/363]], [[676/675]], [[1001/1000]], [[1575/1573]] and [[2080/2079]].  


The 275 val {{val| 275 436 639 772 '''951''' }} tempers out [[3025/3024]], [[3773/3750]], [[8019/8000]]. This can be extended to the 13-limit through [[352/351]], 676/675, [[1716/1715]], [[2200/2197]], and [[3584/3575]].  
The 275 val {{val| 275 436 639 772 '''951''' }} tempers out [[3025/3024]], [[3773/3750]], [[8019/8000]]. This can be extended to the 13-limit through [[352/351]], 676/675, [[1716/1715]], [[2200/2197]], and [[3584/3575]].  
Line 11: Line 11:
=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|275|intervals=prime|columns=11}}
{{Harmonics in equal|275|intervals=prime|columns=11}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| 436 -275 }}
| [{{val| 275 436 }}]
| -0.1863
| 0.1862
| 4.27
|-
| 2.3.5
| {{monzo| 24 -21 4 }}, {{monzo| 19 10 -15 }}
| [{{val| 275 436 639 }}]
| -0.4184
| 0.3618
| 8.29
|-
| 2.3.5.7
| 6144/6125, 10976/10935, 9882516/9765625
| [{{val| 275 436 639 772 }}]
| -0.3051
| 0.3698
| 8.48
|-
| 2.3.5.7.11
| 441/440, 4000/3993, 6144/6125, 10976/10935
| [{{val| 275 436 639 772 952 }}] (275e)
| -0.4096
| 0.3912
| 8.97
|-
| 2.3.5.7.11.13
| 364/363, 441/440, 676/675, 6144/6125, 10976/10935
| [{{val| 275 436 639 772 952 1018 }}] (275e)
| -0.4158
| 0.3574
| 8.19
|}
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Cents<br>(Reduced)
! Associated<br>Ratio
! Temperaments
|-
| 1
| 6\275
| 26.18
| 1594323/1562500
| [[Sfourth]] (5-limit)
|-
| 1
| 109\275
| 485.64
| 320/243
| [[Vulture]] (5-limit)
|-
| 1
| 128\275
| 558.55
| 112/81
| [[Condor]] (275e)
|-
| 5
| 17\275
| 74.18
| 25/24
| [[Countdown]] (275e)
|-
| 11
| 114\275<br>(11\275)
| 497.45<br>(48.00)
| 4/3<br>(36/35)
| [[Hendecatonic]]
|}


[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]