Generator-offset property: Difference between revisions
m →Open questions: Added a link to the "rabbit sequence" scale tree since there is a page for it now |
|||
Line 62: | Line 62: | ||
Choose a tuning where ''g''<sub>1</sub> and ''g''<sub>2</sub> are both very close to but not exactly 1/2*''g''<sub>0</sub>, resulting in a scale very close to the mos generated by 1/2 ''g''<sub>0</sub>. (i.e. ''g''<sub>1</sub> and ''g''<sub>2</sub> differ from 1/2*''g''<sub>0</sub> by ε, a quantity much smaller than the chroma of the ''n''/2-note mos generated by ''g''<sub>0</sub>, which is |''g''<sub>3</sub> − ''g''<sub>2</sub>|). Thus we have 4 distinct sizes for ''k''-steps: | Choose a tuning where ''g''<sub>1</sub> and ''g''<sub>2</sub> are both very close to but not exactly 1/2*''g''<sub>0</sub>, resulting in a scale very close to the mos generated by 1/2 ''g''<sub>0</sub>. (i.e. ''g''<sub>1</sub> and ''g''<sub>2</sub> differ from 1/2*''g''<sub>0</sub> by ε, a quantity much smaller than the chroma of the ''n''/2-note mos generated by ''g''<sub>0</sub>, which is |''g''<sub>3</sub> − ''g''<sub>2</sub>|). Thus we have 4 distinct sizes for ''k''-steps: | ||
# ''a''<sub>1</sub>, ''a''<sub>2</sub> and ''a''<sub>3</sub> are clearly distinct. | # ''a''<sub>1</sub>, ''a''<sub>2</sub> and ''a''<sub>3</sub> are clearly distinct. | ||
# ''a''<sub>4</sub> − ''a''<sub>3</sub> = ''g''<sub>1</sub> − ''g''<sub>2</sub> != 0, since the scale is a non-degenerate | # ''a''<sub>4</sub> − ''a''<sub>3</sub> = ''g''<sub>1</sub> − ''g''<sub>2</sub> != 0, since the scale is a non-degenerate GO scale. | ||
# ''a''<sub>4</sub> − ''a''<sub>1</sub> = ''g''<sub>3</sub> − ''g''<sub>2</sub> = (''g''<sub>3</sub> + ''g''<sub>1</sub>) − (''g''<sub>2</sub> + ''g''<sub>1</sub>) != 0. This is exactly the chroma of the mos generated by ''g''<sub>0</sub>. | # ''a''<sub>4</sub> − ''a''<sub>1</sub> = ''g''<sub>3</sub> − ''g''<sub>2</sub> = (''g''<sub>3</sub> + ''g''<sub>1</sub>) − (''g''<sub>2</sub> + ''g''<sub>1</sub>) != 0. This is exactly the chroma of the mos generated by ''g''<sub>0</sub>. | ||
# ''a''<sub>4</sub> − ''a''<sub>2</sub> = ''g''<sub>1</sub> − 2 ''g''<sub>2</sub> + ''g''<sub>3</sub> = (''g''<sub>3</sub> − ''g''<sub>2</sub>) + (''g''<sub>1</sub> − ''g''<sub>2</sub>) = (chroma ± ε) != 0 by choice of tuning. | # ''a''<sub>4</sub> − ''a''<sub>2</sub> = ''g''<sub>1</sub> − 2 ''g''<sub>2</sub> + ''g''<sub>3</sub> = (''g''<sub>3</sub> − ''g''<sub>2</sub>) + (''g''<sub>1</sub> − ''g''<sub>2</sub>) = (chroma ± ε) != 0 by choice of tuning. | ||
By applying this argument to 1-steps, we see that there must be 4 step sizes in some tuning, a contradiction. Thus ''g''<sub>1</sub> and ''g''<sub>2</sub> must themselves be step sizes. Thus we see that an even-length, unconditionally | By applying this argument to 1-steps, we see that there must be 4 step sizes in some tuning, a contradiction. Thus ''g''<sub>1</sub> and ''g''<sub>2</sub> must themselves be step sizes. Thus we see that an even-length, unconditionally SV3, GO scale must be of the form ''xy...xyxz''. But this pattern is not unconditionally SV3 if ''n'' ≥ 6, since 3-steps come in 4 sizes: ''xyx'', ''yxy'', ''yxz'' and ''xzx''. Thus ''n'' = 4 and the scale is ''xyxz''. This proves (3). | ||
In case 2, let (2, 1) − (1, 1) = ''g''<sub>1</sub>, (1, 2) − (2, 1) = ''g''<sub>2</sub> be the two alternants. Let ''g''<sub>3</sub> be the leftover generator after stacking alternating ''g''<sub>1</sub> and ''g''<sub>2</sub>. Then the generator circle looks like ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>1</sub> ''g''<sub>2</sub> ... ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>3</sub>. Then the combinations of alternants corresponding to a step are: | In case 2, let (2, 1) − (1, 1) = ''g''<sub>1</sub>, (1, 2) − (2, 1) = ''g''<sub>2</sub> be the two alternants. Let ''g''<sub>3</sub> be the leftover generator after stacking alternating ''g''<sub>1</sub> and ''g''<sub>2</sub>. Then the generator circle looks like ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>1</sub> ''g''<sub>2</sub> ... ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>3</sub>. Then the combinations of alternants corresponding to a step are: |