55edo: Difference between revisions
m Sort key |
m Used 15-odd-limit template, cleanup |
||
Line 1: | Line 1: | ||
''' | '''55edo''' divides the octave into 55 parts of 21.818{{cent}}. It can be used for a meantone tuning, and is close to [[1-6_Syntonic_Comma_Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [http://en.wikipedia.org/wiki/Georg_Philipp_Telemann Telemann] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [http://en.wikipedia.org/wiki/Leopold_Mozart Leopold] and [http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart Wolfgang Mozart]. It can also be used for [[Meantone_family|mohajira and liese]] temperaments. | ||
5-limit commas: [[81/80]], | == Theory == | ||
{{Harmonics in equal|55}} | |||
5-limit commas: [[81/80]], {{monzo|31 1 -14}}, {{monzo|27 5 -15}} | |||
7-limit commas: 31104/30625, [[6144/6125]], 81648/78125, 16128/15625, 28672/28125, 33075/32768, 83349/80000, 1029/1000, 686/675, 10976/10935, [[Cloudy comma|16807/16384]], 84035/82944 | 7-limit commas: 31104/30625, [[6144/6125]], 81648/78125, 16128/15625, 28672/28125, 33075/32768, 83349/80000, 1029/1000, 686/675, 10976/10935, [[Cloudy comma|16807/16384]], 84035/82944 | ||
Line 8: | Line 11: | ||
13-limit commas: 59535/57122, 29400/28561, 29568/28561, 29645/28561, 24576/24167, 99225/96668, 24500/24167, 50421/48334, 45927/43940, 2268/2197, 2240/2197, 57624/54925, 61875/61516, 57024/54925, 11264/10985, 72765/70304, 13475/13182, 22869/21970, 6776/6591, 20736/20449, 20480/20449, 84035/81796, 91125/91091, 65536/65065, 15309/14872, 1890/1859, 5600/5577, 9604/9295, 59049/57967, 58320/57967, 4374/4225, 864/845, 512/507, 11025/10816, 6125/6084, 21952/21125, 16807/16224, 84035/82134, 66825/66248, 90112/88725, 56133/54080, 693/676, 1540/1521, 26411/25350, 58806/57967, 58080/57967, 88209/84500, 4356/4225, 7744/7605, 88935/86528, 33275/33124, 27951/27040, 9317/9126, 58564/57967, 43923/42250, 17496/17303, 87808/86515, 55296/55055, 25515/25168, 1575/1573, 64827/62920, 4802/4719, 98415/98098, 59049/57200, 729/715, [[144/143]], 18375/18304, 18522/17875, 10976/10725, 84035/82368, 59049/56875, 11664/11375, 2304/2275, 4096/4095, 1701/1664, [[105/104]], 42336/40625, 25088/24375, 21609/20800, 2401/2340, 9604/9477, 72171/71344, 2673/2600, [[66/65]], [[352/351]], 13475/13312, 33957/32500, 15092/14625, 81675/81536, 58806/56875, 11616/11375, 61952/61425, 68607/66560, 847/832, 4235/4212, 35937/35672, 1331/1300, 5324/5265, 58564/56875, 85293/85184, 13377/13310, 85293/84700, 15288/15125, 31213/30976, 67392/67375, 28431/28160, 34944/34375, 4459/4400, 4459/4455, 28431/28000, 351/350, 79872/78125, 66339/65536, 51597/50000, 637/625, 10192/10125, 31213/30720, [[31213/31104]], 30888/30625, 1287/1280, 81081/78125, 16016/15625, 49049/48000, 49049/48600, 14157/14000, 33033/32768, 77077/75000, 51909/51200, 17303/17280, 75712/75625, 8281/8250, 41067/40960, 31941/31250, 9464/9375, 57967/57600, 91091/90000, 61347/61250, 79092/78125 | 13-limit commas: 59535/57122, 29400/28561, 29568/28561, 29645/28561, 24576/24167, 99225/96668, 24500/24167, 50421/48334, 45927/43940, 2268/2197, 2240/2197, 57624/54925, 61875/61516, 57024/54925, 11264/10985, 72765/70304, 13475/13182, 22869/21970, 6776/6591, 20736/20449, 20480/20449, 84035/81796, 91125/91091, 65536/65065, 15309/14872, 1890/1859, 5600/5577, 9604/9295, 59049/57967, 58320/57967, 4374/4225, 864/845, 512/507, 11025/10816, 6125/6084, 21952/21125, 16807/16224, 84035/82134, 66825/66248, 90112/88725, 56133/54080, 693/676, 1540/1521, 26411/25350, 58806/57967, 58080/57967, 88209/84500, 4356/4225, 7744/7605, 88935/86528, 33275/33124, 27951/27040, 9317/9126, 58564/57967, 43923/42250, 17496/17303, 87808/86515, 55296/55055, 25515/25168, 1575/1573, 64827/62920, 4802/4719, 98415/98098, 59049/57200, 729/715, [[144/143]], 18375/18304, 18522/17875, 10976/10725, 84035/82368, 59049/56875, 11664/11375, 2304/2275, 4096/4095, 1701/1664, [[105/104]], 42336/40625, 25088/24375, 21609/20800, 2401/2340, 9604/9477, 72171/71344, 2673/2600, [[66/65]], [[352/351]], 13475/13312, 33957/32500, 15092/14625, 81675/81536, 58806/56875, 11616/11375, 61952/61425, 68607/66560, 847/832, 4235/4212, 35937/35672, 1331/1300, 5324/5265, 58564/56875, 85293/85184, 13377/13310, 85293/84700, 15288/15125, 31213/30976, 67392/67375, 28431/28160, 34944/34375, 4459/4400, 4459/4455, 28431/28000, 351/350, 79872/78125, 66339/65536, 51597/50000, 637/625, 10192/10125, 31213/30720, [[31213/31104]], 30888/30625, 1287/1280, 81081/78125, 16016/15625, 49049/48000, 49049/48600, 14157/14000, 33033/32768, 77077/75000, 51909/51200, 17303/17280, 75712/75625, 8281/8250, 41067/40960, 31941/31250, 9464/9375, 57967/57600, 91091/90000, 61347/61250, 79092/78125 | ||
==Intervals== | ==Intervals== | ||
{| class="wikitable center-1 right-2 left-3" | |||
{| class="wikitable" | |||
|- | |- | ||
| | ! [[Degree|#]] | ||
! [[Cent]]s | |||
! Approximate ratios | |||
|- | |- | ||
| 0 | | 0 | ||
|0.000 | | 0.000 | ||
| 1/1 | |||
|- | |- | ||
| 1 | |||
| 21.818 | |||
| 128/125, 64/63, 65/64, 78/77, 91/90, 99/98, ''81/80'' | |||
|- | |- | ||
| 2 | |||
| 43.636 | |||
| 36/35 | |||
|- | |- | ||
| 3 | |||
| 65.4545 | |||
| 28/27, ''25/24'' | |||
|- | |- | ||
| 4 | |||
| 87.273 | |||
| 25/24, 21/20 | |||
|- | |- | ||
| 5 | |||
| 109.091 | |||
| 16/15 | |||
|- | |- | ||
| 6 | |||
| 130.909 | |||
| 14/13, ''13/12'' | |||
|- | |- | ||
| 7 | |||
| 152.727 | |||
| 13/12, 12/11 | |||
|- | |- | ||
| 8 | |||
| 174.5455 | |||
| 11/10, ''10/9'' | |||
|- | |- | ||
| 9 | |||
| 196.364 | |||
| 9/8, 10/9 | |||
|- | |- | ||
| 10 | |||
| 218.182 | |||
|17/15 | | 17/15 | ||
|- | |- | ||
| 11 | |||
| 240 | |||
|8/7, 15/13 | | 8/7, 15/13 | ||
|- | |- | ||
| 12 | |||
| 261.818 | |||
|7/6 | | 7/6 | ||
|- | |- | ||
| 13 | |||
| 283.636 | |||
|13/11 | | 13/11 | ||
|- | |- | ||
| 14 | |||
| 305.4545 | |||
|6/5- | | 6/5- | ||
|- | |- | ||
| 15 | |||
| 327.273 | |||
|6/5+ | | 6/5+ | ||
|- | |- | ||
| 16 | |||
| 349.091 | |||
|11/9, 27/22 | | 11/9, 27/22 | ||
|- | |- | ||
| 17 | |||
| 370.909 | |||
|16/13 | | 16/13 | ||
|- | |- | ||
| 18 | |||
| 392.727 | |||
|5/4 | | 5/4 | ||
|- | |- | ||
| 19 | |||
| 414.5455 | |||
|14/11 | | 14/11 | ||
|- | |- | ||
| 20 | |||
| 436.364 | |||
|9/7 | | 9/7 | ||
|- | |- | ||
| 21 | |||
| 458.182 | |||
|13/10 | | 13/10 | ||
|- | |- | ||
| 22 | |||
| 480 | |||
|21/16 | | 21/16 | ||
|- | |- | ||
| 23 | |||
| 501.818 | |||
|4/3, 27/20 | | 4/3, 27/20 | ||
|- | |- | ||
| 24 | |||
| 523.636 | |||
|''27/20'' | | ''27/20'' | ||
|- | |- | ||
| 25 | |||
| 545.4545 | |||
|11/8 | | 11/8 | ||
|- | |- | ||
| 26 | |||
| 567.273 | |||
|18/13, 25/18 | | 18/13, 25/18 | ||
|- | |- | ||
| 27 | |||
| 589.091 | |||
|7/5 | | 7/5 | ||
|- | |- | ||
| 28 | |||
| 610.909 | |||
|10/7 | | 10/7 | ||
|- | |- | ||
| 29 | |||
| 632.727 | |||
|13/9, 36/25 | | 13/9, 36/25 | ||
|- | |- | ||
| 30 | |||
| 654.5455 | |||
|16/11 | | 16/11 | ||
|- | |- | ||
| 31 | |||
| 676.364 | |||
|''40/27'' | | ''40/27'' | ||
|- | |- | ||
| 32 | |||
| 698.182 | |||
|3/2, 40/27 | | 3/2, 40/27 | ||
|- | |- | ||
| 33 | |||
| 720 | |||
|32/21 | | 32/21 | ||
|- | |- | ||
| 34 | |||
| 741.818 | |||
|20/13 | | 20/13 | ||
|- | |- | ||
| 35 | |||
| 763.636 | |||
|14/9 | | 14/9 | ||
|- | |- | ||
| 36 | |||
| 785.4545 | |||
|11/7 | | 11/7 | ||
|- | |- | ||
| 37 | |||
| 807.273 | |||
|8/5 | | 8/5 | ||
|- | |- | ||
| 38 | |||
| 829.091 | |||
|13/8 | | 13/8 | ||
|- | |- | ||
| 39 | |||
| 850.909 | |||
|18/11, 44/27 | | 18/11, 44/27 | ||
|- | |- | ||
| 40 | |||
| 872.727 | |||
|5/3- | | 5/3- | ||
|- | |- | ||
| 41 | |||
| 894.5455 | |||
|5/3+ | | 5/3+ | ||
|- | |- | ||
| 42 | |||
| 916.364 | |||
|22/13 | | 22/13 | ||
|- | |- | ||
| 43 | |||
| 938.182 | |||
|12/7 | | 12/7 | ||
|- | |- | ||
| 44 | |||
| 960 | |||
|7/4, 26/15 | | 7/4, 26/15 | ||
|- | |- | ||
| 45 | |||
| 981.818 | |||
|30/17 | | 30/17 | ||
|- | |- | ||
| 46 | |||
| 1003.636 | |||
|16/9, 9/5 | | 16/9, 9/5 | ||
|- | |- | ||
| 47 | |||
| 1025.4545 | |||
|''9/5'', 20/11 | | ''9/5'', 20/11 | ||
|- | |- | ||
| 48 | |||
| 1047.273 | |||
|11/6, 24/13 | | 11/6, 24/13 | ||
|- | |- | ||
| 49 | |||
| 1069.091 | |||
|''24/13'', 13/7 | | ''24/13'', 13/7 | ||
|- | |- | ||
| 50 | |||
| 1090.909 | |||
|15/8 | | 15/8 | ||
|- | |- | ||
| 51 | |||
| 1112.727 | |||
|40/21, 48/25 | | 40/21, 48/25 | ||
|- | |- | ||
| 52 | |||
| 1134.5455 | |||
|56/27, ''48/25'' | | 56/27, ''48/25'' | ||
|- | |- | ||
| 53 | |||
| 1156.364 | |||
|35/18 | | 35/18 | ||
|- | |- | ||
| 54 | |||
| 1178.182 | |||
|125/64, 63/32, 128/65, 77/39, 180/91, 196/99, ''160/81'' | | 125/64, 63/32, 128/65, 77/39, 180/91, 196/99, ''160/81'' | ||
|- | |- | ||
| 55 | |||
| 1200 | |||
|2/1 | | 2/1 | ||
|} | |} | ||
==Selected just intervals by error== | == Selected just intervals by error == | ||
The following table shows how [[ | The following table shows how [[15-odd-limit]] just intervals are represented in 55edo (ordered by absolute error). | ||
{{15-odd-limit|55}} | |||
{ | |||
|} | |||
[http://www.seraph.it/dep/int/AdagioKV540.mp3 Mozart - Adagio in B minor KV 540] by [[Carlo_Serafini|Carlo Serafini]] ([http://www.seraph.it/blog_files/706c4662272db7703def4d57edfcb955-119.html blog entry]) | == Music == | ||
* [http://www.seraph.it/dep/int/AdagioKV540.mp3 Mozart - Adagio in B minor KV 540] by [[Carlo_Serafini|Carlo Serafini]] ([http://www.seraph.it/blog_files/706c4662272db7703def4d57edfcb955-119.html blog entry]) | |||
[http://tonalsoft.com/monzo/55edo/55edo.aspx "Mozart's tuning: 55edo"] (containing another listening example) in the [[ | == External links == | ||
* [http://tonalsoft.com/monzo/55edo/55edo.aspx "Mozart's tuning: 55edo"] (containing another listening example) in the [[Tonalsoft Encyclopedia]] | |||
[[Category:55edo]] | [[Category:55edo]] | ||
[[Category:Equal divisions of the octave|##]] <!-- 2-digit number --> | [[Category:Equal divisions of the octave|##]] <!-- 2-digit number --> | ||
[[Category:Meantone]] | [[Category:Meantone]] |