935edo: Difference between revisions
+prime error table, style |
+factorization |
||
Line 1: | Line 1: | ||
The '''935 equal divisions of the octave''' ('''935edo''') divides the [[octave]] into 935 parts of 1.283 [[cent]]s each. It is a very strong 23-limit system, and distinctly [[consistent]] through to the [[27-odd-limit]]. It is also a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak tuning]]. In the 5-limit it tempers out the {{monzo| 39 -29 3 }} ([[tricot comma]]), {{monzo| -52 -17 34 }} ([[septendecima]]), and {{monzo| 91 -12 -31 }} (astro). In the 7-limit it tempers out [[4375/4374]] and 52734375/52706752, in the 11-limit 161280/161051 and 117649/117612, and in the 13-limit [[2080/2079]], [[4096/4095]] and [[4225/4224]]. | The '''935 equal divisions of the octave''' ('''935edo''') divides the [[octave]] into 935 parts of 1.283 [[cent]]s each. It is a very strong 23-limit system, and distinctly [[consistent]] through to the [[27-odd-limit]]. It is also a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak tuning]]. In the 5-limit it tempers out the {{monzo| 39 -29 3 }} ([[tricot comma]]), {{monzo| -52 -17 34 }} ([[septendecima]]), and {{monzo| 91 -12 -31 }} (astro). In the 7-limit it tempers out [[4375/4374]] and 52734375/52706752, in the 11-limit 161280/161051 and 117649/117612, and in the 13-limit [[2080/2079]], [[4096/4095]] and [[4225/4224]]. | ||
935 = 5 × 11 × 17, with subset edos 5, 11, 17, 55, 85, and 187. | |||
=== Prime harmonics === | === Prime harmonics === |