353edo: Difference between revisions
Line 14: | Line 14: | ||
=== Relation to a calendar reform === | === Relation to a calendar reform === | ||
In the original Hebrew calendar, years number 3, 6, 8, 11, 14, 17, and 19 within a 19-year pattern (makhzor, plural:makhzorim) are leap. When converted to [[19edo]], this results in [[5L 2s]] mode, and simply the diatonic major scale. | In the original Hebrew calendar, years number 3, 6, 8, 11, 14, 17, and 19 within a 19-year pattern (makhzor, plural:makhzorim) are leap. When converted to [[19edo]], this results in [[5L 2s]] mode, and simply the diatonic major scale. Following this logic, a temperament can be constructed for the Rectified Hebrew calendar (see below), containing 130 notes of the 353edo scale. Hebrew[130] scale has 334\353 as its generator, which is a supermajor seventh, or alternately, 19\353, about a third-tone, since inverting the generator has no effect on the scale. | ||
Using such small of a generator helps explore the 353edo's "upside down" side. In addition, every sub-pattern in a 19-note generator is actually a Hebrew makhzor, that is a mini-19edo on its own, until it is truncated to an 11-note pattern. Just as the original calendar reform consists of 18 makhzorim with 1 hendecaeteris, Hebrew[130] scale consists of a stack of naively 18 "major scales" finished with one 11-edo tetratonic. 18L 1s of Rectified Hebrew gives 19edo a unique stretch: 6 generators correspond to [[5/4]], 13 correspond to [[13/8]], and 15 correspond to [[7/4]]. When measured relative to the generator, the error is less than 1 in 5000. | |||
Rectified Hebrew temperament is a 13-limit extension of the didacus. In the 13-limit, the it tempers out [[3136/3125]], [[4394/4375]], [[10985/10976]], and [[1968512/1953125]]. 5 instances of 5/4 and two of 7/4 both amount to 30 generators (570 steps). Temperance of 4394/4375 means that a stack of three 13/10s (7 generators) is equated with 35/32, octave-reduced, and also splits 14/13 (2 generators) into two parts each corresponding to 26/25. Temperance of 10985/10976 means that three 14/13s are equated with 5/4. | |||
Rectified Hebrew temperament is a 13-limit extension of the didacus. In the 13-limit, the it tempers out [[3136/3125]], [[4394/4375]], [[10985/10976]], and [[1968512/1953125]]. 5 instances of 5/4 and two of 7/4 both amount to 30 generators (570 steps). | |||
=== Specific chords and intervals === | === Specific chords and intervals === | ||
353bbbbb val offers the following resolution sequence:13/8 D4/3 - D7 - T53, or in steps: 247-0-38-152 - 209-323-57-152 - 0-114-209, or 0-95-209. This has a very pleasant sound, with 13/8 acting as a "doubled resolvant" or "resolution into resolution". | 353bbbbb val offers the following resolution sequence:13/8 D4/3 - D7 - T53, or in steps: 247-0-38-152 - 209-323-57-152 - 0-114-209, or 0-95-209. This has a very pleasant sound, with 13/8 acting as a "doubled resolvant" or "resolution into resolution". 169/168 amounts to 3 steps, which is the L step of the full 93L 37s rectified Hebrew scale. | ||
Just as a large amount of [[12edo]] music can be played consistently in 19edo, it can also be played consistently in the 18L 1s subset of Rectified Hebrew. | Just as a large amount of [[12edo]] music can be played consistently in 19edo, it can also be played consistently in the 18L 1s subset of Rectified Hebrew. |