253edo: Difference between revisions

Cleanup and +prime error table
+infobox, improve intro, +RTT table and rank-2 temperaments, cleanup
Line 1: Line 1:
'''253edo''' is the [[EDO|equal division of the octave]] into 253 parts of 4.743083 [[cent]]s each. It is [[consistent]] to the [[17-odd-limit]], approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the prime harmonics from 5 to 17 are all slightly flat. It tempers out [[32805/32768]] in the 5-limit; [[2401/2400]] in the 7-limit; [[385/384]], 1375/1372 and [[4000/3993]] in the 11-limit; [[325/324]], [[1575/1573]] and [[2200/2197]] in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[sesquiquartififths]] temperament.
{{Infobox ET
| Prime factorization = 11 × 23
| Step size = 4.74308¢
| Fifth = 148\253 (701.98¢)
| Semitones = 24:19 (113.83¢ : 90.12¢)
| Consistency = 17
}}
{{EDO intro|253}}
 
== Theory ==
253edo is [[consistent]] to the [[17-odd-limit]], approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the prime harmonics from 5 to 17 are all slightly flat. It tempers out [[32805/32768]] in the 5-limit; [[2401/2400]] in the 7-limit; [[385/384]], 1375/1372 and [[4000/3993]] in the 11-limit; [[325/324]], [[1575/1573]] and [[2200/2197]] in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[sesquiquartififths]] temperament.


253 = 11 × 23, and has subset edos [[11edo]] and [[23edo]].  
253 = 11 × 23, and has subset edos [[11edo]] and [[23edo]].  
Line 5: Line 15:
=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|253}}
{{Harmonics in equal|253}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal 8ve <br>stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| 401 -253 }}
| [{{val| 253 401 }}]
| -0.007
| 0.007
| 0.14
|-
| 2.3.5
| 32805/32768, {{monzo| -4 -37 27 }}
| [{{val| 253 401 587 }}]
| +0.300
| 0.435
| 9.16
|-
| 2.3.5.7
| 2401/2400, 32805/32768, 390625/387072
| [{{val| 253 401 587 710 }}]
| +0.335
| 0.381
| 8.03
|-
| 2.3.5.7.11
| 385/384, 1375/1372, 4000/3993, 19712/19683
| [{{val| 253 401 587 710 875 }}]
| +0.333
| 0.341
| 7.19
|-
| 2.3.5.7.11.13
| 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197
| [{{val| 253 401 587 710 875 936 }}]
| +0.323
| 0.312
| 6.58
|-
| 2.3.5.7.11.13.17
| 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197
| [{{val| 253 401 587 710 875 936 1034 }}]
| +0.298
| 0.295
| 6.22
|}
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Generator<br>(reduced)
! Cents<br>(reduced)
! Associated<br>ratio
! Temperaments
|-
| 1
| 37\253
| 175.49
| 448/405
| [[Sesquiquartififths]]
|-
| 1
| 105\253
| 498.02
| 4/3
| [[Helmholtz]]
|-
| 1
| 123\253
| 583.40
| 7/5
| [[Cotritone]]
|}


== Scales ==
== Scales ==
* 63 32 63 63 32: [[3L_2s|Pentatonic]]
* 63 32 63 63 32: [[3L 2s|Pentic]]
* 43 43 19 43 43 43 19: [[5L_2s|Pythagorean tuning]]
* 43 43 19 43 43 43 19: [[Helmholtz]][7]
* 41 41 24 41 41 41 24: [[Meantone|Meantonic tuning]]
* 41 41 24 41 41 41 24: [[Meantone]][7]
* 35 35 35 35 35 35 35 8: [[7L_1s|Porcupine tuning]]
* 35 35 35 35 35 35 35 8: [[Porcupine]][8]
* 33 33 33 11 33 33 33 33 11: [[23edo|"The Hendecapliqued superdiatonic of the Icositriphony"]]
* 33 33 33 11 33 33 33 33 11: [[23edo|"The Hendecapliqued superdiatonic of the Icositriphony"]]
* 31 31 31 18 31 31 31 31 18: [[7L_2s|Superdiatonic tuning]] in the way of Mavila
* 31 31 31 18 31 31 31 31 18: [[Mavila]][9]
* 26 26 15 26 26 26 15 26 26 26 15: [[sensi11|Sensi tuning]]
* 26 26 15 26 26 26 15 26 26 26 15: [[Sensi]][11]
* 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L_3s|Ketradektriatoh tuning]]
* 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh scale]]


[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]
[[Category:Sesquiquartififths]]
[[Category:Sesquiquartififths]]