Generator-offset property: Difference between revisions
Tag: Undo |
m →Proof |
||
Line 23: | Line 23: | ||
O-O-...-O ((n-1)/2 notes). | O-O-...-O ((n-1)/2 notes). | ||
Label the notes (1, '' | Label the notes (1, ''j'') and (2, ''j''), 1 ≤ ''j'' ≤ (chain length), for notes in the upper and lower chain respectively. | ||
In case 1, let ''g''<sub>1</sub> = (2, 1) − (1, 1) and ''g''<sub>2</sub> = (1, 2) − (2, 1). We have the chain ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>1</sub> ''g''<sub>2</sub> ... ''g''<sub>1</sub> ''g''<sub>3</sub>. | In case 1, let ''g''<sub>1</sub> = (2, 1) − (1, 1) and ''g''<sub>2</sub> = (1, 2) − (2, 1). We have the chain ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>1</sub> ''g''<sub>2</sub> ... ''g''<sub>1</sub> ''g''<sub>3</sub>. | ||
Let ''r'' be odd and ''r'' ≥ 3. Consider the following abstract sizes for the interval class reached by stacking ''r'' generators: | Let ''r'' be odd and ''r'' ≥ 3. Consider the following abstract sizes for the interval class (''k''-steps) reached by stacking ''r'' generators: | ||
# from ''g''<sub>1</sub> ... ''g''<sub>1</sub>, we get ''a''<sub>1</sub> = (''r'' − 1)/2*''g''<sub>0</sub> + ''g''<sub>1</sub> = (''r'' + 1)/2 ''g''<sub>1</sub> + (''r'' − 1)/2 ''g''<sub>2</sub> | # from ''g''<sub>1</sub> ... ''g''<sub>1</sub>, we get ''a''<sub>1</sub> = (''r'' − 1)/2*''g''<sub>0</sub> + ''g''<sub>1</sub> = (''r'' + 1)/2 ''g''<sub>1</sub> + (''r'' − 1)/2 ''g''<sub>2</sub> | ||
# from ''g''<sub>2</sub> ... ''g''<sub>2</sub>, we get ''a''<sub>2</sub> = (''r'' − 1)/2*''g''<sub>0</sub> + ''g''<sub>2</sub> = (''r'' − 1)/2 ''g''<sub>1</sub> + (''r'' + 1)/2 ''g''<sub>2</sub> | # from ''g''<sub>2</sub> ... ''g''<sub>2</sub>, we get ''a''<sub>2</sub> = (''r'' − 1)/2*''g''<sub>0</sub> + ''g''<sub>2</sub> = (''r'' − 1)/2 ''g''<sub>1</sub> + (''r'' + 1)/2 ''g''<sub>2</sub> | ||
Line 33: | Line 33: | ||
# from ''g''<sub>1</sub> (...odd # of gens...) ''g''<sub>1</sub> ''g''<sub>3</sub> ''g''<sub>1</sub> (...odd # of gens...) ''g''<sub>1</sub>, we get ''a''<sub>4</sub> = (''r'' + 1)/2 ''g''<sub>1</sub> + (''r'' − 3)/2 ''g''<sub>2</sub> + ''g''<sub>3</sub>. | # from ''g''<sub>1</sub> (...odd # of gens...) ''g''<sub>1</sub> ''g''<sub>3</sub> ''g''<sub>1</sub> (...odd # of gens...) ''g''<sub>1</sub>, we get ''a''<sub>4</sub> = (''r'' + 1)/2 ''g''<sub>1</sub> + (''r'' − 3)/2 ''g''<sub>2</sub> + ''g''<sub>3</sub>. | ||
Choose a tuning where ''g''<sub>1</sub> and ''g''<sub>2</sub> are both very close to but not exactly 1/2*''g''<sub>0</sub>, resulting in a scale very close to the mos generated by 1/2 ''g''<sub>0</sub>. (i.e. ''g''<sub>1</sub> and ''g''<sub>2</sub> differ from 1/2*''g''<sub>0</sub> by ε, a quantity much smaller than the chroma of the ''n''/2-note mos generated by ''g''<sub>0</sub>, which is |''g''<sub>3</sub> − ''g''<sub>2</sub>|). Thus we have 4 distinct sizes for k-steps: | Choose a tuning where ''g''<sub>1</sub> and ''g''<sub>2</sub> are both very close to but not exactly 1/2*''g''<sub>0</sub>, resulting in a scale very close to the mos generated by 1/2 ''g''<sub>0</sub>. (i.e. ''g''<sub>1</sub> and ''g''<sub>2</sub> differ from 1/2*''g''<sub>0</sub> by ε, a quantity much smaller than the chroma of the ''n''/2-note mos generated by ''g''<sub>0</sub>, which is |''g''<sub>3</sub> − ''g''<sub>2</sub>|). Thus we have 4 distinct sizes for ''k''-steps: | ||
# ''a''<sub>1</sub>, ''a''<sub>2</sub> and ''a''<sub>3</sub> are clearly distinct. | # ''a''<sub>1</sub>, ''a''<sub>2</sub> and ''a''<sub>3</sub> are clearly distinct. | ||
# ''a''<sub>4</sub> − ''a''<sub>3</sub> = ''g''<sub>1</sub> − ''g''<sub>2</sub> != 0, since the scale is a non-trivial AG. | # ''a''<sub>4</sub> − ''a''<sub>3</sub> = ''g''<sub>1</sub> − ''g''<sub>2</sub> != 0, since the scale is a non-trivial AG. | ||
Line 39: | Line 39: | ||
# ''a''<sub>4</sub> − ''a''<sub>2</sub> = ''g''<sub>1</sub> − 2 ''g''<sub>2</sub> + ''g''<sub>3</sub> = (''g''<sub>3</sub> − ''g''<sub>2</sub>) + (''g''<sub>1</sub> − ''g''<sub>2</sub>) = (chroma ± ε) != 0 by choice of tuning. | # ''a''<sub>4</sub> − ''a''<sub>2</sub> = ''g''<sub>1</sub> − 2 ''g''<sub>2</sub> + ''g''<sub>3</sub> = (''g''<sub>3</sub> − ''g''<sub>2</sub>) + (''g''<sub>1</sub> − ''g''<sub>2</sub>) = (chroma ± ε) != 0 by choice of tuning. | ||
By applying this argument to 1-steps, we see that there must be 4 step sizes in some tuning, a contradiction. Thus ''g''<sub>1</sub> and ''g''<sub>2</sub> must themselves be step sizes. Thus we see that an even-cardinality, unconditionally MV3, AG scale must be of the form ''xy...xyxz''. But this pattern is not unconditionally MV3 if ''n'' ≥ 6, since 3-steps come in 4 sizes: ''xyx'', ''yxy'', ''yxz'' and | By applying this argument to 1-steps, we see that there must be 4 step sizes in some tuning, a contradiction. Thus ''g''<sub>1</sub> and ''g''<sub>2</sub> must themselves be step sizes. Thus we see that an even-cardinality, unconditionally MV3, AG scale must be of the form ''xy...xyxz''. But this pattern is not unconditionally MV3 if ''n'' ≥ 6, since 3-steps come in 4 sizes: ''xyx'', ''yxy'', ''yxz'' and ''xzx''. Thus ''n'' = 4 and the scale is ''xyxz''. | ||
''xzx''. Thus ''n'' = 4 and the scale is ''xyxz''. | |||
In case 2, let (2, 1) − (1, 1) = ''g''<sub>1</sub>, (1, 2) − (2, 1) = ''g''<sub>2</sub> be the two alternating generators. Let ''g''<sub>3</sub> be the leftover generator after stacking alternating ''g''<sub>1</sub> and ''g''<sub>2</sub>. Then the generator circle looks like ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>1</sub> ''g''<sub>2</sub> ... ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>3</sub>. Then the generators corresponding to a step are: | In case 2, let (2, 1) − (1, 1) = ''g''<sub>1</sub>, (1, 2) − (2, 1) = ''g''<sub>2</sub> be the two alternating generators. Let ''g''<sub>3</sub> be the leftover generator after stacking alternating ''g''<sub>1</sub> and ''g''<sub>2</sub>. Then the generator circle looks like ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>1</sub> ''g''<sub>2</sub> ... ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>3</sub>. Then the generators corresponding to a step are: | ||
Line 51: | Line 50: | ||
Now we only need to see that AG + odd cardinality => unconditionally MV3. But the argument in case 2 above works for any interval class (unconditional MV3 wasn't used), hence any interval class comes in at most 3 sizes regardless of tuning. | Now we only need to see that AG + odd cardinality => unconditionally MV3. But the argument in case 2 above works for any interval class (unconditional MV3 wasn't used), hence any interval class comes in at most 3 sizes regardless of tuning. | ||
== Conjectures == | == Conjectures == | ||
=== Conjecture 2 === | === Conjecture 2 === |