80edo: Difference between revisions

+table of rank-2 temperaments
m Cleanup
Line 7: Line 7:


80et provides the [[optimal patent val]] for 5-limit [[diaschismic]], for 13-limit [[srutal]], and for 7-, 11- and 13-limit [[bidia]]. It is a good tuning for various temperaments in [[canou family]], especially in higher limits.  
80et provides the [[optimal patent val]] for 5-limit [[diaschismic]], for 13-limit [[srutal]], and for 7-, 11- and 13-limit [[bidia]]. It is a good tuning for various temperaments in [[canou family]], especially in higher limits.  
{{primes in edo|80|columns=10|prec=2}}


== Intervals ==
== Intervals ==
Line 185: Line 187:
|}
|}
<nowiki>*</nowiki> based on treating 80edo as a [[29-limit]] temperament; other approaches are possible. Inconsistent interpretations in italic.
<nowiki>*</nowiki> based on treating 80edo as a [[29-limit]] temperament; other approaches are possible. Inconsistent interpretations in italic.
== Just approximation ==
{| class="wikitable center-all"
! colspan="2" | <!-- empty cell -->
! prime 2
! prime 3
! prime 5
! prime 7
! prime 11
! prime 13
! prime 17
! prime 19
! prime 23
! prime 29
! prime 31
|-
! rowspan="2" |Error
! absolute (¢)
| 0.00
| +3.04
| +3.69
| +6.17
| +3.68
| -0.53
| +0.04
| +2.49
| +1.73
| +5.42
| -5.04
|-
! [[Relative error|relative]] (%)
| 0.0
| +20.3
| +24.6
| +41.1
| +24.5
| -3.5
| +0.3
| +16.6
| +11.5
| +36.2
| -33.6
|}


== Rank-2 temperaments ==
== Rank-2 temperaments ==
80et supports a profusion of 19-limit (and lower) rank two temperaments which have mostly not been explored. We might mention:
80et supports a profusion of 19-limit (and lower) rank-2 temperaments which have mostly not been explored. We might mention:
 
31&amp;80 &lt;&lt;7 6 15 27 -24 -23 -20 ... ||
 
72&amp;80 &lt;&lt;24 30 40 24 32 24 0 ... ||
 
34&amp;80 &lt;&lt;2 -4 -50 22 16 2 -40 ... ||
 
46&amp;80 &lt;&lt;2 -4 30 22 16 2 40 ... ||
 
29&amp;80 &lt;&lt;3 34 45 33 24 -37 20 ... ||
 
12&amp;80 &lt;&lt;4 -8 -20 -36 32 4 0 ... ||
 
22&amp;80 &lt;&lt;6 -10 12 -14 -32 6 -40 ... ||
 
58&amp;80 &lt;&lt;6 -10 12 -14 -32 6 40 ... ||


41&amp;80 &lt;&lt;7 26 25 -3 -24 -33 20 ... ||
* 31&amp;80 {{multival| 7 6 15 27 -24 -23 -20 … }}
* 72&amp;80 {{multival| 24 30 40 24 32 24 0 … }}
* 34&amp;80 {{multival| 2 -4 -50 22 16 2 -40 … }}
* 46&amp;80 {{multival| 2 -4 30 22 16 2 40 … }}
* 29&amp;80 {{multival| 3 34 45 33 24 -37 20 … }}
* 12&amp;80 {{multival| 4 -8 -20 -36 32 4 0 … }}
* 22&amp;80 {{multival| 6 -10 12 -14 -32 6 -40 … }}
* 58&amp;80 {{multival| 6 -10 12 -14 -32 6 40 … }}
* 41&amp;80 {{multival| 7 26 25 -3 -24 -33 20 … }}


In each case, the numbers joined by an ampersand represent 19-limit [[patent val]]s (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.  
In each case, the numbers joined by an ampersand represent 19-limit [[patent val]]s (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.