16ed5/3: Difference between revisions

Ayceman (talk | contribs)
Metatristone: Forgot to simplify to 5/2
Tags: Mobile edit Mobile web edit
Ayceman (talk | contribs)
Line 422: Line 422:


== Temperaments ==
== Temperaments ==
The 2L 5s scale is generated by a very accurate [[4/3]], such that two of them wind up on a near exact [[16/9]], which period-reduces to [[16/15]] (the minor mossecond). This interval taken 2 times is approximated by an [[8/7]], and taken 4 times is approximated by a [[6/5]] (or [[2/1]] in the next mosoctave). These 2 equivalencies result in two tempered commas: the marvel comma - [[225/224]] ((<sup>16</sup>/<sub>15</sub>)<sup>2</sup>=(<sup>8</sup>/<sub>7</sub>)), and the diaschisma - [[2048/2025]] ((<sup>16</sup>/<sub>15</sub>)<sup>3</sup>=(<sup>6</sup>/<sub>5</sub>)).
The 2L 5s scale is generated by a very accurate [[4/3]], such that two of them wind up on a near exact [[16/9]], which period-reduces to [[16/15]] (the minor mossecond). This interval taken 2 times is approximated by an [[8/7]], and taken 3 times is approximated by a [[6/5]] (or [[2/1]] in the next mosoctave). These 2 equivalencies result in two tempered commas: the marvel comma - [[225/224]] ((<sup>16</sup>/<sub>15</sub>)<sup>2</sup>=(<sup>8</sup>/<sub>7</sub>)), and the diaschisma - [[2048/2025]] ((<sup>16</sup>/<sub>15</sub>)<sup>3</sup>=(<sup>6</sup>/<sub>5</sub>)).


The diaschisma can also be tempered by taking 5 generators to mean a [[3/2]] ((<sup>4</sup>/<sub>3</sub>)<sup>5</sup>=(<sup>3</sup>/<sub>2</sub>)·(<sup>5</sup>/<sub>3</sub>)<sup>2</sup>), while the marvel comma can also be tempered with a stack of 3 generators, making a [[10/7]] ((<sup>4</sup>/<sub>3</sub>)<sup>3</sup>=(<sup>10</sup>/<sub>7</sub>)·(<sup>5</sup>/<sub>3</sub>)).
The diaschisma can also be tempered by taking 5 generators to mean a [[3/2]] ((<sup>4</sup>/<sub>3</sub>)<sup>5</sup>=(<sup>3</sup>/<sub>2</sub>)·(<sup>5</sup>/<sub>3</sub>)<sup>2</sup>), while the marvel comma can also be tempered with a stack of 3 generators, making a [[10/7]] ((<sup>4</sup>/<sub>3</sub>)<sup>3</sup>=(<sup>10</sup>/<sub>7</sub>)·(<sup>5</sup>/<sub>3</sub>)).