Quick reference: formatting and corrections
m Quick reference: seems row vectors should be capital
Line 37: Line 37:
=== 3-limit TE tuning of ets ===
=== 3-limit TE tuning of ets ===


Given a val "a", we have Tenney-weighted val v = aW, where W is the Tenney-weighting matrix.  
Given a val A, we have Tenney-weighted val V = AW, where W is the Tenney-weighting matrix.  


If t is the Tenney-weighted tuning map, then for any et, for obvious reasons,  
If T is the Tenney-weighted tuning map, then for any et, for obvious reasons,  


[math]t_2/v_2 = t_1/v_1[/math]
[math]t_2/v_2 = t_1/v_1[/math]
Line 45: Line 45:
Let ''c'' be the coefficient of TE-weighted tuning map ''c'' = ''t''<sub>2</sub>/''t''<sub>1</sub> = ''v''<sub>2</sub>/''v''<sub>1</sub>
Let ''c'' be the coefficient of TE-weighted tuning map ''c'' = ''t''<sub>2</sub>/''t''<sub>1</sub> = ''v''<sub>2</sub>/''v''<sub>1</sub>


Let ''e'' be the [[TE error]] in Breed's RMS, and j be the [[JIP]], then
Let ''e'' be the [[TE error]] in Breed's RMS, and J be the [[JIP]], then


[math]e = ||\vec t - \vec j||_\text {RMS} = \sqrt {\frac {(t_1 - 1)^2 + (t_2 - 1)^2)}{2}}[/math]
[math]e = ||T - J||_\text {RMS} = \sqrt {\frac {(t_1 - 1)^2 + (t_2 - 1)^2)}{2}}[/math]


Since  
Since  
Line 89: Line 89:
And just proceed as before,  
And just proceed as before,  


[math]t_1 = \frac {\sum \vec c}{\vec c \cdot \vec c} = \frac {v_1 \sum \vec v}{\vec v \cdot \vec v}[/math]
[math]t_1 = \frac {\sum \vec c}{\vec c^\mathsf T \vec c} = \frac {v_1 \sum V}{VV^\mathsf T}[/math]


Substitute ''t''<sub>''i''</sub>/''c''<sub>''i''</sub> for ''t''<sub>1</sub>,  
Substitute ''t''<sub>''i''</sub>/''c''<sub>''i''</sub> for ''t''<sub>1</sub>,  


[math]
[math]
t_i = \frac {v_i \sum \vec v}{\vec v \cdot \vec v}, i = 1, 2, \ldots, n \\
t_i = \frac {v_i \sum V}{VV^\mathsf T}, i = 1, 2, \ldots, n \\
e = \sqrt {1 - \frac {(\sum \vec v)^2}{n \vec v \cdot \vec v}}
e = \sqrt {1 - \frac {(\sum V)^2}{n VV^\mathsf T}}
[/math]
[/math]