FloraC
Joined 30 March 2020
→Quick reference: formatting and corrections |
m →Quick reference: seems row vectors should be capital |
||
Line 37: | Line 37: | ||
=== 3-limit TE tuning of ets === | === 3-limit TE tuning of ets === | ||
Given a val | Given a val A, we have Tenney-weighted val V = AW, where W is the Tenney-weighting matrix. | ||
If | If T is the Tenney-weighted tuning map, then for any et, for obvious reasons, | ||
[math]t_2/v_2 = t_1/v_1[/math] | [math]t_2/v_2 = t_1/v_1[/math] | ||
Line 45: | Line 45: | ||
Let ''c'' be the coefficient of TE-weighted tuning map ''c'' = ''t''<sub>2</sub>/''t''<sub>1</sub> = ''v''<sub>2</sub>/''v''<sub>1</sub> | Let ''c'' be the coefficient of TE-weighted tuning map ''c'' = ''t''<sub>2</sub>/''t''<sub>1</sub> = ''v''<sub>2</sub>/''v''<sub>1</sub> | ||
Let ''e'' be the [[TE error]] in Breed's RMS, and | Let ''e'' be the [[TE error]] in Breed's RMS, and J be the [[JIP]], then | ||
[math]e = || | [math]e = ||T - J||_\text {RMS} = \sqrt {\frac {(t_1 - 1)^2 + (t_2 - 1)^2)}{2}}[/math] | ||
Since | Since | ||
Line 89: | Line 89: | ||
And just proceed as before, | And just proceed as before, | ||
[math]t_1 = \frac {\sum \vec c}{\vec c \ | [math]t_1 = \frac {\sum \vec c}{\vec c^\mathsf T \vec c} = \frac {v_1 \sum V}{VV^\mathsf T}[/math] | ||
Substitute ''t''<sub>''i''</sub>/''c''<sub>''i''</sub> for ''t''<sub>1</sub>, | Substitute ''t''<sub>''i''</sub>/''c''<sub>''i''</sub> for ''t''<sub>1</sub>, | ||
[math] | [math] | ||
t_i = \frac {v_i \sum | t_i = \frac {v_i \sum V}{VV^\mathsf T}, i = 1, 2, \ldots, n \\ | ||
e = \sqrt {1 - \frac {(\sum | e = \sqrt {1 - \frac {(\sum V)^2}{n VV^\mathsf T}} | ||
[/math] | [/math] | ||