39edo: Difference between revisions
mNo edit summary |
ET parameter name, cleanup |
||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET | ||
| Prime factorization = 3 | | Prime factorization = 3 × 13 | ||
| Step size = 30.769¢ | | Step size = 30.769¢ | ||
| Fifth | | Fifth = 23\39 = 707.692¢ | ||
| Major 2nd = 7\39 = 215¢ | | Major 2nd = 7\39 = 215¢ | ||
| Minor 2nd = 2\39 = 62¢ | | Minor 2nd = 2\39 = 62¢ | ||
Line 11: | Line 11: | ||
== Theory == | == Theory == | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
! colspan="2" | | ! colspan="2" | <!-- empty cell --> | ||
! prime 2 | ! prime 2 | ||
! prime 3 | ! prime 3 | ||
Line 17: | Line 17: | ||
! prime 7 | ! prime 7 | ||
! prime 11 | ! prime 11 | ||
!prime 13 | ! prime 13 | ||
!prime 17 | ! prime 17 | ||
!prime 19 | ! prime 19 | ||
|- | |- | ||
! rowspan="2" |Error | ! rowspan="2" | Error | ||
! absolute (¢) | ! absolute (¢) | ||
| 0.0 | | 0.0 | ||
| | | +5.7 | ||
| | | +13.7 | ||
| | | -15.0 | ||
| | | +2.5 | ||
| -9.8 | | -9.8 | ||
| -12.6 | | -12.6 | ||
|10.2 | | +10.2 | ||
|- | |- | ||
![[Relative error|relative]] (%) | ! [[Relative error|relative]] (%) | ||
| 0.0 | | 0.0 | ||
| | | +19 | ||
| | | +44 | ||
| | | -49 | ||
| | | +8 | ||
| -32 | | -32 | ||
| -41 | | -41 | ||
|33 | | +33 | ||
|- | |- | ||
! colspan="2" |[[nearest edomapping]] | ! colspan="2" | [[nearest edomapping]] | ||
|39 | | 39 | ||
|23 | | 23 | ||
|13 | | 13 | ||
|31 | | 31 | ||
|18 | | 18 | ||
|27 | | 27 | ||
|3 | | 3 | ||
|10 | | 10 | ||
|- | |- | ||
! colspan="2" |[[fifthspan]] | ! colspan="2" | [[fifthspan]] | ||
|0 | | 0 | ||
| +1 | | +1 | ||
| -13 | | -13 | ||
Line 62: | Line 62: | ||
| +14 | | +14 | ||
|} | |} | ||
'''39-EDO''', '''39-ED2''' or '''39-tET''' divides the [[octave]] in 39 equal parts. If we take 22\39 as a fifth, 39edo can be used in [[Mavila|mavila temperament]], and from that point of view it seems to have attracted the attention of the [[Armodue]] school, an Italian group that use the scheme of [[7L 2s|superdiatonic]] LLLsLLLLs like a basical scale for notation and theory, suited in [[16edo|16-ED2]], and allied systems: [[25edo|25-ED2]] [1/3-tone 3;2]; [[41edo|41-ED2]] [1/5-tone 5;3]; and [[57edo|57-ED2]] [1/7-tone 7;4]. [[Hornbostel temperaments]] is included too with: [[23edo|23-ED2]] [1/3-tone 3;1]; 39-ED2 [1/5-tone 5;2] & [[62edo|62-ED2]] [1/8-tone 8;3]. | '''39-EDO''', '''39-ED2''' or '''39-tET''' divides the [[octave]] in 39 equal parts. If we take 22\39 as a fifth, 39edo can be used in [[Mavila|mavila temperament]], and from that point of view it seems to have attracted the attention of the [[Armodue]] school, an Italian group that use the scheme of [[7L 2s|superdiatonic]] LLLsLLLLs like a basical scale for notation and theory, suited in [[16edo|16-ED2]], and allied systems: [[25edo|25-ED2]] [1/3-tone 3;2]; [[41edo|41-ED2]] [1/5-tone 5;3]; and [[57edo|57-ED2]] [1/7-tone 7;4]. [[Hornbostel temperaments]] is included too with: [[23edo|23-ED2]] [1/3-tone 3;1]; 39-ED2 [1/5-tone 5;2] & [[62edo|62-ED2]] [1/8-tone 8;3]. | ||