16edo: Difference between revisions
mNo edit summary Tags: Mobile edit Mobile web edit |
added M2, m2 and A1 to the template, moved the primes-error table up to the top |
||
Line 9: | Line 9: | ||
| Prime factorization = 2<sup>4</sup> | | Prime factorization = 2<sup>4</sup> | ||
| Subgroup = 2.5.7.13.19.27 | | Subgroup = 2.5.7.13.19.27 | ||
| Step size = | | Step size = 75¢ | ||
| Fifth type = [[Mavila]] 9\16 675¢ | | Fifth type = [[Mavila]] 9\16 = 675¢ | ||
| Major 2nd = 2\16 = 150¢ | |||
| Minor 2nd = 3\16 = 225¢ | |||
| Augmented 1sn = -1\16 = -75¢ | |||
| Common uses = mavila, metallic harmony | | Common uses = mavila, metallic harmony | ||
| Important MOS = [[mavila]] anti-diatonic 2L5s 2223223 (9\16, 1\1)<br/>[[mavila]] superdiatonic 7L2s 222212221 (9\16, 1\1)<br/>[[gorgo]] 5L1s 555551 (3\16, 1\1)<br/>[[lemba]] 4L2s 332332 (3\16, 1\2) | | Important MOS = [[mavila]] anti-diatonic 2L5s 2223223 (9\16, 1\1)<br/>[[mavila]] superdiatonic 7L2s 222212221 (9\16, 1\1)<br/>[[gorgo]] 5L1s 555551 (3\16, 1\1)<br/>[[lemba]] 4L2s 332332 (3\16, 1\2) | ||
Line 16: | Line 19: | ||
== Theory == | == Theory == | ||
'''16-EDO''' is the [[ | {| class="wikitable" style="text-align:center;" | ||
! | |||
!prime 2 | |||
!prime 3 | |||
!prime 5 | |||
!prime 7 | |||
!prime 11 | |||
!prime 13 | |||
!prime 17 | |||
!prime 19 | |||
|- | |||
!error (¢) | |||
|0¢ | |||
| -26.96¢ | |||
| -11.3¢ | |||
| +6.2¢ | |||
| -26.3¢ | |||
| -15.6¢ | |||
| -30.0¢ | |||
|2.5¢ | |||
|- | |||
![[relative error]] (%) | |||
|0% | |||
| -36 | |||
| -15 | |||
|8 | |||
| -35 | |||
| -21 | |||
| -40 | |||
|3 | |||
|- | |||
![[nearest edomapping]] | |||
|16 | |||
|9 | |||
|5 | |||
|13 | |||
|7 | |||
|11 | |||
|1 | |||
|4 | |||
|- | |||
![[fifthspan]] | |||
|0 | |||
| +1 | |||
| -3 | |||
| +5 | |||
| -1 | |||
| +3 | |||
| -7 | |||
|4 | |||
|} | |||
'''16-EDO''' is the [[equal division of the octave]] into sixteen narrow chromatic semitones each of 75 [[cent]]s exactly. It is not especially good at representing most low-odd-limit musical intervals, but it has a [[7/4]] which is only six cents sharp, and a [[5/4]] which is only eleven cents flat. Four steps of it gives the 300 cent minor third interval, the same of that 12-EDO, giving it four diminished seventh chords exactly like those of [[12edo|12-EDO]], and a diminished triad on each scale step. | |||
==Intervals== | ==Intervals== | ||
Line 439: | Line 495: | ||
==Selected just intervals by error== | ==Selected just intervals by error== | ||
The following table shows how [[Just-24|some prominent just intervals]] are represented in 16-EDO (ordered by absolute error). | The following table shows how [[Just-24|some prominent just intervals]] are represented in 16-EDO (ordered by absolute error). | ||
Line 872: | Line 903: | ||
==Commas== | ==Commas== | ||
16 EDO [[tempering_out|tempers out]] the following [[ | 16 EDO [[tempering_out|tempers out]] the following [[comma]]s. (Note: This assumes [[val|val]] < 16 25 37 45 55 59 |.) | ||
{| class="wikitable" | {| class="wikitable" |