27edo: Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
In music, '''27 equal temperament''', called '''27-tet''', '''27-edo''', or '''27-et''', is the scale derived by dividing the octave into 27 equally large steps. Each step represents a frequency ratio of the 27th root of 2, or 44.44 cents. | In music, '''27 equal temperament''', called '''27-tet''', '''27-edo''', or '''27-et''', is the scale derived by dividing the octave into 27 equally large steps. Each step represents a frequency ratio of the 27th root of 2, or 44.44 cents. | ||
{{Infobox ET | {{Infobox ET | ||
| Prime factorization = | | Prime factorization = 3<sup>3</sup> | ||
| Subgroup = 2.3.5. | | Subgroup = 2.3.5.7.13.19 | ||
| Step size = | | Step size = 44.444¢ | ||
| Fifth type = [[superpyth]] 16\27 711.111¢ | | Fifth type = [[superpyth]] 16\27 711.111¢ | ||
| Common uses = augmented, superpyth | | Common uses = augmented, superpyth | ||
| Important MOSes = [[superpyth]] diatonic 5*5-2*1 (16\27, 1\1)<br/> [[augmented]] ([[augene]]) 3*2-6*1 (1\15, 1\3)<br/> [[beatles 3*5-4*3 (8\27, 1\1)<br/> [[beatles]] 7*3-3*2 (9\27, 1\1)<br/> [[sensi]] 3*4-5*3 (10\27, 1\1)<br/>[[tetracot]] 6*4-1*3 (4\27, 1\1)<br/>[[octacot]] 13*2-1*1 (2\27, 1\1) | | Important MOSes = [[superpyth]] diatonic 5*5-2*1 (16\27, 1\1)<br/> [[augmented]] ([[augene]]) 3*2-6*1 (1\15, 1\3)<br/> [[beatles]] 3*5-4*3 (8\27, 1\1)<br/> [[beatles]] 7*3-3*2 (9\27, 1\1)<br/> [[sensi]] 3*4-5*3 (10\27, 1\1)<br/>[[tetracot]] 6*4-1*3 (4\27, 1\1)<br/>[[octacot]] 13*2-1*1 (2\27, 1\1) | ||
}} | }} | ||
== Theory == | == Theory == |