|
|
Line 430: |
Line 430: |
|
| |
|
| [https://en.xen.wiki/w/File:Blackwood_resolution.wav Blackwood(10)] | | [https://en.xen.wiki/w/File:Blackwood_resolution.wav Blackwood(10)] |
|
| |
| == Trififth Temperament ==
| |
| Trififth temperament is the name I've given to the 2.3.7-limit temperament with a generator of a flat [[8/7]] that tempers out 1029/1024. The simplest primes it can give are [[7/4]] down one generator and [[3/2]] up 3 generators, hence the name. Other primes are in the double digits, with 5 being 17 generators.
| |
|
| |
| This is the closest [http://www.microtonalsoftware.com/scale-tree.html?left=13&right=17&rr=1200&ioi=279.944474 scale tree] I could find for EDOs that support the generator, starting with [[5edo|5]] and [[16edo|16EDO]]. To my knowledge, there's no zigzag pattern for the generator.
| |
|
| |
| === Interval Chain ===
| |
| {| class="wikitable"
| |
| !991.96
| |
| !26.63
| |
| !261.30
| |
| !495.98
| |
| !730.65
| |
| !965.33
| |
| !0.0
| |
| !234.67
| |
| !469.35
| |
| !704.02
| |
| !938.69
| |
| !1173.37
| |
| !208.04
| |
| |-
| |
| |16/9 -4c
| |
| |[[64/63]]
| |
| |7/6 +6c
| |
| |[[4/3]]
| |
| |[[32/21]]
| |
| |7/4 +4c
| |
| |1/1
| |
| |8/7 -4c
| |
| |[[21/16]]
| |
| |3/2
| |
| |[[12/7]] -6c
| |
| |63/32
| |
| |9/8 +4c
| |
| |}
| |
|
| |
| === MOS Scales ===
| |
|
| |
| ==== [[1L 4s|1L4s]] ====
| |
| {| class="wikitable"
| |
| !0
| |
| !1
| |
| !2
| |
| !3
| |
| !4
| |
| |-
| |
| |0.0
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |234.67
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |469.35
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |704.02
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |938.69
| |
| |}
| |
| L = 261.30 (-4x)
| |
|
| |
| s = 234.67 (1x)
| |
|
| |
| c = 26.63 (-5x)
| |
|
| |
| ==== [[5L 1s|5L1s]] ====
| |
| {| class="wikitable"
| |
| !0
| |
| !1
| |
| !2
| |
| !3
| |
| !4
| |
| !5
| |
| |-
| |
| |0.0
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |234.67
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |469.35
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |704.02
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |938.69
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |1173.37
| |
| |}
| |
| L = 234.67 (1x)
| |
|
| |
| s = 26.63 (-5x)
| |
|
| |
| c = 208.04 (6x)
| |
|
| |
| ==== [[5L 6s|5L6s]] ====
| |
| {| class="wikitable"
| |
| !0
| |
| !1
| |
| !2
| |
| !3
| |
| !4
| |
| !5
| |
| !6
| |
| !7
| |
| !8
| |
| !9
| |
| !10
| |
| |-
| |
| |0.0
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |208.04
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |234.67
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |442.72
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |469.35
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |677.39
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |704.02
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |912.07
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |938.69
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |1146.74
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |1173.37
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |}
| |
| L= 208.04 (6x)
| |
|
| |
| s = 26.63 (-5x)
| |
|
| |
| c = 181.41 (11x)
| |