12edo: Difference between revisions
→Commas: added color names |
added an interval table |
||
Line 12: | Line 12: | ||
In terms of the kernel, which is to say the commas it tempers out, it tempers out the Pythagorean comma, 3^12/2^19, the Didymus comma, [[81/80]], the diesis, [[128/125]], the diaschisma, [[2048/2025]], the Archytas comma, [[64/63]], the septimal quartertone, [[36/35]], the jubilisma, [[50/49]], the septimal semicomma, [[126/125]], and the septimal kleisma, [[225/224]]. Each of these affects the structure of 12et in specific ways, and tuning systems which share the comma in question will be similar to 12et in precisely those ways. | In terms of the kernel, which is to say the commas it tempers out, it tempers out the Pythagorean comma, 3^12/2^19, the Didymus comma, [[81/80]], the diesis, [[128/125]], the diaschisma, [[2048/2025]], the Archytas comma, [[64/63]], the septimal quartertone, [[36/35]], the jubilisma, [[50/49]], the septimal semicomma, [[126/125]], and the septimal kleisma, [[225/224]]. Each of these affects the structure of 12et in specific ways, and tuning systems which share the comma in question will be similar to 12et in precisely those ways. | ||
== Intervals == | |||
{| class="wikitable" | |||
!Degree | |||
!Cents | |||
! colspan="3" |Interval | |||
!7-limit Ratios* | |||
|- | |||
|0 | |||
|0 | |||
|unison | |||
|P1 | |||
|D | |||
|1/1 | |||
|- | |||
|1 | |||
|100 | |||
|aug 1sn, minor 2nd | |||
|A1, m2 | |||
|D#, Eb | |||
|15/14, 16/15, 21/20, 25/24, 28/27 | |||
|- | |||
|2 | |||
|200 | |||
|major 2nd | |||
|M2 | |||
|E | |||
|8/7, 9/8, 10/9 | |||
|- | |||
|3 | |||
|300 | |||
|minor 3rd | |||
|m3 | |||
|F | |||
|7/6, 6/5 | |||
|- | |||
|4 | |||
|400 | |||
|major 3rd | |||
|M3 | |||
|F# | |||
|5/4, 9/7 | |||
|- | |||
|5 | |||
|500 | |||
|perfect 4th | |||
|P4 | |||
|G | |||
|4/3 | |||
|- | |||
|6 | |||
|600 | |||
|aug 4th, dim 5th | |||
|A4, d5 | |||
|G#, Ab | |||
|7/5, 10/7 | |||
|- | |||
|7 | |||
|700 | |||
|perfect 5th | |||
|P5 | |||
|A | |||
|3/2 | |||
|- | |||
|8 | |||
|800 | |||
|minor 6th | |||
|m6 | |||
|Bb | |||
|8/5, 14/9 | |||
|- | |||
|9 | |||
|900 | |||
|major 6th | |||
|M6 | |||
|B | |||
|5/3, 12/7 | |||
|- | |||
|10 | |||
|1000 | |||
|minor 7th | |||
|m7 | |||
|C | |||
|7/4, 9/5, 16/9 | |||
|- | |||
|11 | |||
|1100 | |||
|major 7th | |||
|M7 | |||
|C# | |||
|15/8, 28/15, 40/21, 48/25, 27/14 | |||
|- | |||
|19 | |||
|1200 | |||
|perfect 8ve | |||
|P8 | |||
|D | |||
|2/1 | |||
|} | |||
<nowiki>*</nowiki> based on treating 12-edo as a 2.3.5.7 subgroup temperament; other approaches are possible. | |||
==Rank two temperaments== | ==Rank two temperaments== | ||
Line 310: | Line 410: | ||
! Error (abs., in [[cent|cents]]) | ! Error (abs., in [[cent|cents]]) | ||
|- | |- | ||
| [[4/3]], [[3/2]] | | '''[[4/3]], [[3/2]]''' | ||
| 1.955 | | '''1.955''' | ||
|- | |- | ||
| [[15/13]], [[26/15]] | | [[15/13]], [[26/15]] | ||
Line 325: | Line 425: | ||
| 11.731 | | 11.731 | ||
|- | |- | ||
| [[5/4]], [[8/5]] | | '''[[5/4]], [[8/5]]''' | ||
| 13.686 | | '''13.686''' | ||
|- | |- | ||
| [[6/5]], [[5/3]] | | [[6/5]], [[5/3]] | ||
Line 346: | Line 446: | ||
| 28.298 | | 28.298 | ||
|- | |- | ||
| [[8/7]], [[7/4]] | | '''[[8/7]], [[7/4]]''' | ||
| 31.174 | | '''31.174''' | ||
|- | |- | ||
| [[7/6]], [[12/7]] | | [[7/6]], [[12/7]] | ||
Line 367: | Line 467: | ||
| 38.573 | | 38.573 | ||
|- | |- | ||
| [[16/13]], [[13/8]] | | '''[[16/13]], [[13/8]]''' | ||
| 40.528 | | '''40.528''' | ||
|- | |- | ||
| [[13/10]], [[20/13]] | | [[13/10]], [[20/13]] | ||
Line 376: | Line 476: | ||
| 47.408 | | 47.408 | ||
|- | |- | ||
| [[11/8]], [[16/11]] | | '''[[11/8]], [[16/11]]''' | ||
| 48.682 | | '''48.682''' | ||
|- | |- | ||
| [[12/11]], [[11/6]] | | [[12/11]], [[11/6]] |