36edf: Difference between revisions

Xenllium (talk | contribs)
Created page with "'''36EDF''' is the equal division of the just perfect fifth into 36 parts of 19.4988 cents each, corresponding to 61.5424 edo. ==Intervals== {| class="wi..."
Tags: Mobile edit Mobile web edit
 
No edit summary
Line 1: Line 1:
'''36EDF''' is the [[EDF|equal division of the just perfect fifth]] into 36 parts of 19.4988 [[cent|cents]] each, corresponding to 61.5424 [[edo]].
'''36EDF''' is the [[EDF|equal division of the just perfect fifth]] into 36 parts of 19.49875 [[cent|cents]] each, corresponding to 61.5424 [[edo]].


==Intervals==
==Intervals==
Line 10: Line 10:
|-
|-
| | 0
| | 0
| | 0.0000
| | 0
| | '''exact [[1/1]]'''
| | '''exact [[1/1]]'''
| |  
| |  
|-
|-
| | 1
| | 1
| | 19.4988
| | 19.49875
| | 90/89, 89/88
| | 90/89, 89/88
| |  
| |  
Line 25: Line 25:
|-
|-
| | 3
| | 3
| | 58.4963
| | 58.49625
| | 30/29
| | 30/29
| |  
| |  
|-
|-
| | 4
| | 4
| | 77.9950
| | 77.995
| |  
| |  
| |  
| |  
|-
|-
| | 5
| | 5
| | 97.4938
| | 97.49375
| | 73/69
| | 73/69
| |  
| |  
Line 45: Line 45:
|-
|-
| | 7
| | 7
| | 136.4913
| | 136.49125
| |  
| |  
| |  
| |  
|-
|-
| | 8
| | 8
| | 155.9900
| | 155.99
| |  
| |  
| |  
| |  
|-
|-
| | 9
| | 9
| | 175.4888
| | 175.48875
| | 135/122
| | 135/122
| |  
| |  
Line 65: Line 65:
|-
|-
| | 11
| | 11
| | 214.4863
| | 214.48625
| | 60/53
| | 60/53
| |  
| |  
|-
|-
| | 12
| | 12
| | 233.9850
| | 233.985
| | 87/76
| | 8/7
| |  
| |  
|-
|-
| | 13
| | 13
| | 253.4838
| | 253.48375
| | [[22/19]]
| | [[22/19]]
| |  
| |  
Line 85: Line 85:
|-
|-
| | 15
| | 15
| | 292.4813
| | 292.48125
| |  
| |32/27
| |  
| |  
|-
|-
| | 16
| | 16
| | 311.9800
| | 311.98
| |  
| | 6/5
| |  
| |  
|-
|-
| | 17
| | 17
| | 331.4788
| | 331.47875
| | 109/90
| |110/89
| |  
| |  
|-
|-
| | 18
| | 18
| | 350.9775
| | 350.9775
| | 109/89
| |11/9
| |  
| |  
|-
|-
| | 19
| | 19
| | 370.4763
| | 370.47625
| |  
| |  
| |  
| |  
|-
|-
| | 20
| | 20
| | 389.9750
| | 389.975
| |  
| | 5/4
| |  
| |  
|-
|-
| | 21
| | 21
| | 409.4738
| | 409.47375
| |  
| |  
| |  
| |  
Line 125: Line 125:
|-
|-
| | 23
| | 23
| | 448.4713
| | 448.47125
| | 57/44
| | 57/44
| |  
| |  
|-
|-
| | 24
| | 24
| | 467.9700
| | 467.97
| | 38/29
| | 38/29
| |  
| |  
|-
|-
| | 25
| | 25
| | 487.4688
| | 487.46875
| | 53/40
| | 53/40
| |  
| |  
Line 141: Line 141:
| | 26
| | 26
| | 506.9675
| | 506.9675
| | 729/544
| |243/181
| |  
| |  
|-
|-
| | 27
| | 27
| | 526.4663
| | 526.46625
| | 61/45
| | 61/45
| |  
| |  
|-
|-
| | 28
| | 28
| | 545.9650
| | 545.965
| |  
| |  
| |  
| |  
|-
|-
| | 29
| | 29
| | 565.4638
| | 565.46375
| |  
| |  
| |  
| |  
Line 165: Line 165:
|-
|-
| | 31
| | 31
| | 604.4613
| | 604.46125
| |  
| |24/17
| |  
| |  
|-
|-
| | 32
| | 32
| | 623.9600
| | 623.96
| |  
| |  
| |  
| |  
|-
|-
| | 33
| | 33
| | 643.4588
| | 643.45875
| | 29/20
| | 29/20
| |  
| |  
Line 185: Line 185:
|-
|-
| | 35
| | 35
| | 682.4563
| | 682.45625
| | 89/60
| |40/27
| |  
| |  
|-
|-
| | 36
| | 36
| | 701.9550
| | 701.955
| | '''exact [[3/2]]'''
| | '''exact [[3/2]]'''
| | just perfect fifth
| | just perfect fifth
|-
|37
|721.45375
|135/89, 267/176
|
|-
|38
|740.4525
|135/88
|
|-
|39
|760.45125
|42/59
|
|-
|40
|779.95
|
|
|-
|41
|799.44875
|73/46
|
|-
|42
|818.9475
|
|
|-
|43
|838.44625
|
|
|-
|44
|857.945
|
|
|-
|45
|877.44375
|405/244
|
|-
|46
|896.9425
|136/81
|
|-
|47
|916.44125
|90/53
|
|-
|48
|935.94
|12/7
|
|-
|49
|955.43875
|33/19
|
|-
|50
|974.9375
|72/41
|
|-
|51
|996.43625
|16/9
|
|-
|52
|1013.935
|9/5
|
|-
|53
|1032.43375
|165/89
|
|-
|54
|1052.9325
|11/6
|
|-
|55
|1072.43125
|
|
|-
|56
|1091.93
|15/8
|
|-
|57
|1110.92875
|
|
|-
|58
|1130.9275
|123/64
|
|-
|59
|1150.92625
|171/88
|
|-
|60
|1169.925
|57/29
|
|-
|61
|1189.42375
|159/80
|
|-
|62
|1208.9225
|729/362
|
|-
|63
|1228.42125
|61/30
|
|-
|64
|1247.92
|
|
|-
|65
|1267.41875
|
|
|-
|66
|1286.9175
|
|
|-
|67
|1306.41625
|36/17
|
|-
|68
|1325.915
|
|
|-
|69
|1345.41375
|87/40
|
|-
|70
|1364.9125
|11/5
|
|-
|71
|1384.41125
|20/9
|
|-
|72
|1403.91
|'''exact''' 9/4
|
|}
|}


[[Category:Edf]]
[[Category:Edf]]
[[Category:Edonoi]]
[[Category:Edonoi]]