83edo: Difference between revisions
m cat rename |
added prime interval approximation table |
||
Line 1: | Line 1: | ||
The 83 equal temperament divides the octave into 83 equal parts of 14.458 | The '''83 equal temperament''' ('''83edo''') divides the octave into 83 equal parts of 14.458 [[cent]]s each. The 3/1 is 6.5 cents sharp and the 5/1 is 4 cents sharp, with 7, 11, and 13 more accurate but a little flat. It tempers out 15625/15552 in the 5-limit and 686/675, 4000/3969 and 6144/6125 in the 7-limit, and provides the optimal patent val for the 7-limit 27&56 temperament with wedgie <<5 18 17 17 13 -11||. In the 11-limit it tempers out 121/120, 176/175 and 385/384, and in the 13-limit 91/90, 169/168 and 196/195, and it provides the optimal patent val for the 11-limit 22&61 temperament and the 13-limit 15&83 temperament. 83 is the 23rd prime number. | ||
{| class="wikitable center-all" | |||
|- | |||
|+ Approximation of primary intervals in 83 EDO | |||
|- | |||
! colspan="2" | Prime number | |||
! 3 | |||
! 5 | |||
! 7 | |||
! 11 | |||
! 13 | |||
! 17 | |||
! 19 | |||
! 23 | |||
|- | |||
! rowspan="2" | Error | |||
! absolute ([[cent|¢]]) | |||
| +6.48 | |||
| +4.05 | |||
| -0.15 | |||
| -1.92 | |||
| -1.97 | |||
| -3.75 | |||
| +6.10 | |||
| -6.59 | |||
|- | |||
! [[Relative error|relative]] (%) | |||
| +44.8 | |||
| +28.0 | |||
| -1.0 | |||
| -13.3 | |||
| -13.6 | |||
| -25.9 | |||
| +42.2 | |||
| -45.6 | |||
|- | |||
! colspan="2" | Degree ([[octave reduction|reduced]]) | |||
| 132 (49) | |||
| 193 (27) | |||
| 233 (67) | |||
| 287 (38) | |||
| 307 (58) | |||
| 339 (7) | |||
| 353 (21) | |||
| 375 (43) | |||
|} | |||
[[Category:Edo]] | [[Category:Edo]] | ||
Line 6: | Line 52: | ||
[[Category:todo:expand]] | [[Category:todo:expand]] | ||
[[Category:todo:explain its xenharmonic value]] | [[Category:todo:explain its xenharmonic value]] | ||