13edo: Difference between revisions
m cats |
Tags: Mobile edit Mobile web edit |
||
Line 319: | Line 319: | ||
By this, we can assume that the major ninth of 13edo can be thought of as analogous to the perfect fifth in 12edo and other meantone edos.This means that the major second or major ninth is the most consonant interval next to 2/1 in 13edo followed by 11/8, 5/4 and so on. The 4:5:9 chord can therefore be thought of as a possible basic harmonic triad in 13edo. | By this, we can assume that the major ninth of 13edo can be thought of as analogous to the perfect fifth in 12edo and other meantone edos.This means that the major second or major ninth is the most consonant interval next to 2/1 in 13edo followed by 11/8, 5/4 and so on. The 4:5:9 chord can therefore be thought of as a possible basic harmonic triad in 13edo. | ||
The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite <u>[[13edo#top|close]]</u> to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad). These triads and tetrads | The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite <u>[[13edo#top|close]]</u> to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad). These triads and tetrads are likely the most consonant base sonorities available in 13 edo and act in a similar way to major/minor triads. However, other sonorities such as Orwell chords are available as well. | ||
Other approaches explored by specific composers and theorists are outlined further down, in the context of more complete tonal systems. | Other approaches explored by specific composers and theorists are outlined further down, in the context of more complete tonal systems. |