Pepper ambiguity: Difference between revisions

Wikispaces>FREEZE
No edit summary
m Cleanup and improve readability
Line 1: Line 1:
Given an [[EDO|edo]] N and a positive rational number q, we may define the ''ambiguity'' ambig(N, q) of q in N edo by first computing u = N log2(q), and from there v = abs(u - round(u)). Then ambig(N, q) = v/(1-v). Since v is a measure of the relative error of q in is best approximation in N edo, and 1-v of its second best approximation, ambig(N, q) is the ratio of the best approximation to the second best. If we used [[Relative_cent|relative cent]]s instead to measure relative error, we would get the same result.
Given an [[edo]] ''N'' and a positive rational number ''q'', we may define the '''ambiguity''' ambig(''N'', ''q'') of ''q'' in ''N'' edo by first computing ''u'' = ''N'' log<sub>2</sub>(''q''), and from there ''v'' = abs(''u'' - round(''u'')). Then ambig(''N'', ''q'') = ''v''/(1 - ''v''). Since ''v'' is a measure of the relative error of ''q'' in is best approximation in ''N'' edo, and 1 - ''v'' of its second best approximation, ambig(''N'', ''q'') is the ratio of the best approximation to the second best. If we used [[relative cent]]s instead to measure relative error, we would get the same result.


Given a finite set s of positive rational numbers, the maximum value of ambig(N, q) for all q∈s is the ''Pepper ambiguity'' of N with respect to s. If the set s is the L odd limit [[Tonality_diamond|tonality diamond]], this is the L-limit Pepper ambiguity of N. Lists of N of decreasing Pepper ambiguity can be found on the On-Line Encyclopedia of Integer Sequences, [https://oeis.org/A117554 https://oeis.org/A117554], [https://oeis.org/A117555 https://oeis.org/A117555], [https://oeis.org/A117556 https://oeis.org/A117556], [https://oeis.org/A117557 https://oeis.org/A117557], [https://oeis.org/A117558 https://oeis.org/A117558] and [https://oeis.org/A117559 https://oeis.org/A117559]. We may also define the mean ambiguity for N with respect to s by taking the mean of ambig(N, q) for all members q of s.
Given a finite set s of positive rational numbers, the maximum value of ambig(''N'', ''q'') for all ''q'' ∈ ''s'' is the '''Pepper ambiguity''' of ''N'' with respect to ''s''. If the set ''s'' is the ''L'' odd limit [[tonality diamond]], this is the ''L''-limit Pepper ambiguity of ''N''. Lists of ''N'' of decreasing Pepper ambiguity can be found on the [[On-Line Encyclopedia of Integer Sequences]]:
 
* [[OEIS: A117554]]
* [[OEIS: A117555]]
* [[OEIS: A117556]]
* [[OEIS: A117557]]
* [[OEIS: A117558]]
* [[OEIS: A117559]]
 
We may also define the mean ambiguity for ''N'' with respect to ''s'' by taking the mean of ambig(''N'', ''q'') for all members ''q'' of ''s''.
 
[[Category:Theory]]
[[Category:Measure]]