Superpyth: Difference between revisions

Line 146: Line 146:
In general, we would want to consider 3 somewhat more important than 7, and 7 somewhat more important than 9; in meantone, similar principles imply that an optimum is to be found sharp of 1/4-comma, though flat of [[1/5-comma meantone|1/5-comma]]. In archy, these place it sharper than 1/4-comma but flatter than 1/3-comma, which is supported by the standard [[CTE]] and [[CWE]] metrics. In fact, 22edo is slightly sharp of 1/4-comma (though still flat of the CTE optimum) and therefore pushes in the more accurate direction given the above discussion. 2/7-comma superpyth is particularly notable since it tunes the 7/6 and 9/7 equally sharp and 3/2 twice as sharp as the thirds; [[71edo]] (709.859{{c}}) and [[93edo]] with its sharp fifth of 709.677{{c}} come very close to forming closed systems of 2/7-comma.
In general, we would want to consider 3 somewhat more important than 7, and 7 somewhat more important than 9; in meantone, similar principles imply that an optimum is to be found sharp of 1/4-comma, though flat of [[1/5-comma meantone|1/5-comma]]. In archy, these place it sharper than 1/4-comma but flatter than 1/3-comma, which is supported by the standard [[CTE]] and [[CWE]] metrics. In fact, 22edo is slightly sharp of 1/4-comma (though still flat of the CTE optimum) and therefore pushes in the more accurate direction given the above discussion. 2/7-comma superpyth is particularly notable since it tunes the 7/6 and 9/7 equally sharp and 3/2 twice as sharp as the thirds; [[71edo]] (709.859{{c}}) and [[93edo]] with its sharp fifth of 709.677{{c}} come very close to forming closed systems of 2/7-comma.


27edo is also the point where superpyth tunes 5/4 to the familiar 400{{c}} major third of [[12edo]], and in sharper tunings different mappings of 5/4 arise with more accuracy (see [[quasiultra]] and [[ultrapyth]]), somewhat analogous to [[19edo]] (which represents [[1/3-comma meantone]] and is on the edge between septimal meantone and [[flattone]]). The same goes for flatter tunings than 22edo (see [[quasisuper]] and [[dominant (temperament)|dominant]]). Furthermore, the 11-limit extension works strictly within 22edo and 27e-edo, with 22edo conflating 11/10 with 12/11, and 27e-edo conflating 11/8 with 7/5.
27edo is also the point where superpyth tunes 5/4 to the familiar 400{{c}} major third of [[12edo]], and in sharper tunings different mappings of 5/4 arise with more accuracy (see [[quasiultra]] and [[ultrapyth]]), somewhat analogous to [[19edo]] (which represents [[1/3-comma meantone]] and is on the edge between septimal meantone and [[flattone]]). The same goes for flatter tunings than 22edo (see [[quasisuper]] and [[dominant (temperament)|dominant]]). Furthermore, the 11-limit canonical extension works strictly within 22edo and 27e-edo, with 22edo conflating 11/10 with 12/11, and 27e-edo conflating 11/8 with 7/5.


Tunings flatter than 1/4-comma archy, such as 1/5-comma (close to [[39edo]]), 1/6-comma, … are analogous to the historical "modified meantones" ([[1/6-comma meantone|1/6-comma]], [[1/7-comma meantone|1/7-comma]], …), as they prioritize the tuning of 3/2 more than the accuracy of septimal harmony. The alternative 11-limit extension, suprapyth, and an alternative extension to 5, quasisuper, work best for tunings in the range of 17edo to 22edo.  
Tunings flatter than 1/4-comma archy, such as 1/5-comma (close to [[39edo]]), 1/6-comma, … are analogous to the historical "modified meantones" ([[1/6-comma meantone|1/6-comma]], [[1/7-comma meantone|1/7-comma]], …), as they prioritize the tuning of 3/2 more than the accuracy of septimal harmony. The alternative 11-limit extension, suprapyth, and an alternative extension to 5, quasisuper, work best for tunings in the range of 17edo to 22edo.