Tenney–Euclidean tuning: Difference between revisions
Move properties of pseudoinverse to the pseudoinverse page. Set straight the weightedness of projection matrices |
→Examples: this section should be mainly about tuning a temp, rather than projection matrices |
||
Line 82: | Line 82: | ||
: ''For practical help, see [[POTE tuning]].'' | : ''For practical help, see [[POTE tuning]].'' | ||
=== Optimizing a temperament === | |||
Consider [[pajara]], the 7-limit temperament tempering out 50/49 and 64/63. Its mapping ''V'' is | |||
<math>\displaystyle | |||
V = \begin{bmatrix} | |||
2 & 0 & 11 & 12 \\ | |||
0 & 1 & -2 & -2 | |||
\end{bmatrix} | |||
</math> | |||
This can be found by taking two equal temperaments supporting pajara (e.g. [[12edo]] and [[22edo]]), defining a 2×4 matrix formed by the vals and then canonicalizing it. In weighted coordinates this would be | |||
<math>\displaystyle | <math>\displaystyle | ||
V_W = | V_W = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
2.000000 & 0.000000 & 4.737442 & 4.274486 \\ | |||
0.000000 & 0.630930 & -0.861353 & -0.712414 | |||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
Line 99: | Line 107: | ||
V_W^+ = | V_W^+ = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
0.143942 & 0.622569 \\ | |||
0.196399 & 1.232405 \\ | |||
0.072833 & -0.207801 \\ | |||
0.085876 & -0.060988 | |||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
so we obtain the generator tuning map {{nowrap|''G'' {{=}} ''J''<sub>''W''</sub>{{subsup|''V''|''W''|+}} }}: | |||
<math>\displaystyle | |||
G = \begin{bmatrix} 0.499049 & 1.586185 \end{bmatrix} | |||
</math> | |||
and the tuning map {{nowrap| ''T'' {{=}} ''GV'' }} which shows the value each prime harmonic is tuned to: | |||
<math>\displaystyle | |||
T = \begin{bmatrix} 0.998099 & 1.586185 & 2.317174 & 2.816223 \end{bmatrix} | |||
</math> | |||
The results are in octaves. Multiply them by 1200 to obtain the tuning in cents. | |||
=== Using a Frobenius projection matrix === | |||
{{nowrap|''P'' {{=}} {{subsup|''V''|''W''|+}}''V''<sub>''W''</sub>}} is a 4×4 symmetrical matrix which projects weighted vals in TE tuning space, or weighted monzos in TE interval space, to a subspace defined by pajara. It therefore projects the weighted monzos for 50/49, 64/63, 225/224, 2048/2025 etc. to the zero vector, whereas it leaves pajara vals such as [[10edo]] in weighted coordinates unchanged. | {{nowrap|''P'' {{=}} {{subsup|''V''|''W''|+}}''V''<sub>''W''</sub>}} is a 4×4 symmetrical matrix which projects weighted vals in TE tuning space, or weighted monzos in TE interval space, to a subspace defined by pajara. It therefore projects the weighted monzos for 50/49, 64/63, 225/224, 2048/2025 etc. to the zero vector, whereas it leaves pajara vals such as [[10edo]] in weighted coordinates unchanged. | ||