Tenney–Euclidean temperament measures: Difference between revisions

Start documenting Sintel's design
It's fine to use det!
Line 32: Line 32:
Our first complexity measure of a temperament is given by the ''L''<sup>2</sup> norm of the Tenney-weighted wedgie ''M''<sub>''W''</sub>, which can in turn be obtained from the Tenney-weighted mapping matrix ''V''<sub>''W''</sub>. This complexity can be easily computed either from the wedgie or from the mapping matrix, using the {{w|Gramian matrix|Gramian}}:  
Our first complexity measure of a temperament is given by the ''L''<sup>2</sup> norm of the Tenney-weighted wedgie ''M''<sub>''W''</sub>, which can in turn be obtained from the Tenney-weighted mapping matrix ''V''<sub>''W''</sub>. This complexity can be easily computed either from the wedgie or from the mapping matrix, using the {{w|Gramian matrix|Gramian}}:  


$$ \norm{M_W}_2 = \sqrt {\abs{V_W V_W^\mathsf{T}}} $$
$$ \norm{M_W}_2 = \sqrt {\det(V_W V_W^\mathsf{T})} $$


where {{!}}·{{!}} denotes the determinant, and {{t}} denotes the transpose.  
where det(·) denotes the determinant, and {{t}} denotes the transpose.  


Graham Breed and [[Gene Ward Smith]] have proposed different RMS norms. Let us denote the RMS norm of ''M'' as ‖''M''‖<sub>RMS</sub>. In Graham's paper<ref name="primerr">Graham Breed. [http://x31eq.com/temper/primerr.pdf ''Prime Based Error and Complexity Measures''], often referred to as ''primerr.pdf''.</ref>, an RMS norm is proposed as
Graham Breed and [[Gene Ward Smith]] have proposed different RMS norms. Let us denote the RMS norm of ''M'' as ‖''M''‖<sub>RMS</sub>. In Graham's paper<ref name="primerr">Graham Breed. [http://x31eq.com/temper/primerr.pdf ''Prime Based Error and Complexity Measures''], often referred to as ''primerr.pdf''.</ref>, an RMS norm is proposed as


$$ \norm{M_W}_\text{RMS} = \sqrt {\abs{\frac {V_W V_W^\mathsf{T}}{n}}} = \frac {\norm{M_W}_2}{\sqrt {n^r}} $$
$$ \norm{M_W}_\text{RMS} = \sqrt {\det \left( \frac {V_W V_W^\mathsf{T}}{n} \right)} = \frac {\norm{M_W}_2}{\sqrt {n^r}} $$


where ''n'' is the number of primes up to the prime limit ''p'', and ''r'' is the rank of the temperament. Thus ''n''<sup>''r''</sup> is the number of permutations of ''n'' things taken ''r'' at a time with repetition, which equals the number of entries of the wedgie in its full tensor form.  
where ''n'' is the number of primes up to the prime limit ''p'', and ''r'' is the rank of the temperament. Thus ''n''<sup>''r''</sup> is the number of permutations of ''n'' things taken ''r'' at a time with repetition, which equals the number of entries of the wedgie in its full tensor form.  
Line 46: Line 46:
Gene Ward Smith's RMS norm is given as
Gene Ward Smith's RMS norm is given as


$$ \norm{M_W}_\text{RMS}' = \sqrt {\frac{\abs{V_W V_W^\mathsf{T}}}{C(n, r)}} = \frac {\norm{M_W}_2}{\sqrt {C(n, r)}} $$
$$ \norm{M_W}_\text{RMS}' = \sqrt {\frac{\det(V_W V_W^\mathsf{T})}{C(n, r)}} = \frac {\norm{M_W}_2}{\sqrt {C(n, r)}} $$


where {{nowrap|C(''n'', ''r'')}} is the number of combinations of ''n'' things taken ''r'' at a time without repetition, which equals the number of entries of the wedgie in the usual, compressed form.  
where {{nowrap|C(''n'', ''r'')}} is the number of combinations of ''n'' things taken ''r'' at a time without repetition, which equals the number of entries of the wedgie in the usual, compressed form.  
Line 96: Line 96:
Gene Ward Smith defines the simple badness of ''M'' as {{nowrap|‖''J''<sub>''W''</sub> ∧ ''M''<sub>''W''</sub>‖<sub>RMS</sub>}}, where {{nowrap|''J''<sub>''W''</sub> {{=}} {{val| 1 1 … 1 }}}} is the JIP in weighted coordinates. Once again, if we have a list of vectors we may use a Gramian to compute it. First we note that {{nowrap|''a''<sub>''i''</sub> {{=}} ''J''<sub>''W''</sub>·('''v'''<sub>''w''</sub>)<sub>''i''</sub>/''n''}} is the mean value of the entries of ('''v'''<sub>''w''</sub>)<sub>''i''</sub>. Then note that {{nowrap|''J''<sub>''W''</sub> ∧ (('''v'''<sub>''w''</sub>)<sub>1</sub> − ''a''<sub>1</sub>''J''<sub>''W''</sub>) ∧ (('''v'''<sub>''w''</sub>)<sub>2</sub> − ''a''<sub>2</sub>''J''<sub>''W''</sub>) ∧ … ∧ (('''v'''<sub>''w''</sub>)<sub>''r''</sub> − ''a''<sub>''r''</sub>''J''<sub>''W''</sub>) {{=}} ''J''<sub>''W''</sub> ∧ ('''v'''<sub>''w''</sub>)<sub>1</sub> ∧ ('''v'''<sub>''w''</sub>)<sub>2</sub> ∧ … ∧ ('''v'''<sub>''w''</sub>)<sub>''r''</sub>}}, since wedge products with more than one term ''J''<sub>''W''</sub> are zero. The Gram matrix of the vectors ''J''<sub>''W''</sub> and {{nowrap|('''v'''<sub>''w''</sub>)<sub>1</sub> − ''a''<sub>''i''</sub>''J''<sub>''W''</sub>}} will have ''n'' as the {{nowrap|(1, 1)}} entry, and 0's in the rest of the first row and column. Hence we obtain:
Gene Ward Smith defines the simple badness of ''M'' as {{nowrap|‖''J''<sub>''W''</sub> ∧ ''M''<sub>''W''</sub>‖<sub>RMS</sub>}}, where {{nowrap|''J''<sub>''W''</sub> {{=}} {{val| 1 1 … 1 }}}} is the JIP in weighted coordinates. Once again, if we have a list of vectors we may use a Gramian to compute it. First we note that {{nowrap|''a''<sub>''i''</sub> {{=}} ''J''<sub>''W''</sub>·('''v'''<sub>''w''</sub>)<sub>''i''</sub>/''n''}} is the mean value of the entries of ('''v'''<sub>''w''</sub>)<sub>''i''</sub>. Then note that {{nowrap|''J''<sub>''W''</sub> ∧ (('''v'''<sub>''w''</sub>)<sub>1</sub> − ''a''<sub>1</sub>''J''<sub>''W''</sub>) ∧ (('''v'''<sub>''w''</sub>)<sub>2</sub> − ''a''<sub>2</sub>''J''<sub>''W''</sub>) ∧ … ∧ (('''v'''<sub>''w''</sub>)<sub>''r''</sub> − ''a''<sub>''r''</sub>''J''<sub>''W''</sub>) {{=}} ''J''<sub>''W''</sub> ∧ ('''v'''<sub>''w''</sub>)<sub>1</sub> ∧ ('''v'''<sub>''w''</sub>)<sub>2</sub> ∧ … ∧ ('''v'''<sub>''w''</sub>)<sub>''r''</sub>}}, since wedge products with more than one term ''J''<sub>''W''</sub> are zero. The Gram matrix of the vectors ''J''<sub>''W''</sub> and {{nowrap|('''v'''<sub>''w''</sub>)<sub>1</sub> − ''a''<sub>''i''</sub>''J''<sub>''W''</sub>}} will have ''n'' as the {{nowrap|(1, 1)}} entry, and 0's in the rest of the first row and column. Hence we obtain:


$$ \norm{ J_W \wedge M_W }'_\text {RMS} = \sqrt{\frac{n}{C(n, r + 1)}} \abs{(\vec{v_w})_i \cdot (\vec{v_w})_j - n a_i a_j} $$
$$ \norm{ J_W \wedge M_W }'_\text {RMS} = \sqrt{\frac{n}{C(n, r + 1)}} \det((\vec{v_w})_i \cdot (\vec{v_w})_j - n a_i a_j) $$


A perhaps simpler way to view this is to start with a mapping matrix ''V''<sub>''W''</sub> and add an extra row ''J''<sub>''W''</sub> corresponding to the JIP; we will label this matrix ''V''<sub>''J''</sub>. Then the simple badness is:
A perhaps simpler way to view this is to start with a mapping matrix ''V''<sub>''W''</sub> and add an extra row ''J''<sub>''W''</sub> corresponding to the JIP; we will label this matrix ''V''<sub>''J''</sub>. Then the simple badness is:


$$ \norm{ J_W \wedge M_W }'_\text {RMS} = \sqrt{\frac{n}{C(n, r + 1)}} \abs{V_J V_J^\mathsf{T}} $$
$$ \norm{ J_W \wedge M_W }'_\text {RMS} = \sqrt{\frac{n}{C(n, r + 1)}} \det(V_J V_J^\mathsf{T}) $$


So that we can basically view the simple badness as the TE complexity of the "pseudo-temperament" formed by adding the JIP to the mapping matrix as if it were another val.
So that we can basically view the simple badness as the TE complexity of the "pseudo-temperament" formed by adding the JIP to the mapping matrix as if it were another val.