Tenney–Euclidean temperament measures: Difference between revisions

TE error: improve the intro of this section
m TE error: minor formatting fix
Line 61: Line 61:
By Graham Breed's definition, TE error may be accessed via [[Tenney–Euclidean tuning|TE tuning map]]. If ''T''<sub>''W''</sub> is the Tenney-weighted tuning map, then the TE error ''G'' can be found by
By Graham Breed's definition, TE error may be accessed via [[Tenney–Euclidean tuning|TE tuning map]]. If ''T''<sub>''W''</sub> is the Tenney-weighted tuning map, then the TE error ''G'' can be found by


<math>\displaystyle
$$
\begin{align}
\begin{align}
G &= \norm{T_W - J_W}_\text{RMS} \\
G &= \norm{T_W - J_W}_\text{RMS} \\
Line 67: Line 67:
&= \sqrt{J_W(V_W^+ V_W - I)(V_W^+ V_W - I)^\mathsf{T} J_W^\mathsf{T}/n}
&= \sqrt{J_W(V_W^+ V_W - I)(V_W^+ V_W - I)^\mathsf{T} J_W^\mathsf{T}/n}
\end{align}
\end{align}
</math>
$$


If ''T''<sub>''W''</sub> is denominated in cents, then ''J''<sub>''W''</sub> should be also, so that {{nowrap|''J''<sub>''W''</sub> {{=}} {{val| 1200 1200 … 1200 }}}}. Here {{nowrap|''T''<sub>''W''</sub> − ''J''<sub>''W''</sub>}} is the list of weighted errors of each prime harmonic.
If ''T''<sub>''W''</sub> is denominated in cents, then ''J''<sub>''W''</sub> should be also, so that {{nowrap|''J''<sub>''W''</sub> {{=}} {{val| 1200 1200 … 1200 }}}}. Here {{nowrap|''T''<sub>''W''</sub> − ''J''<sub>''W''</sub>}} is the list of weighted errors of each prime harmonic.