Octave (interval region): Difference between revisions
m Xenllium moved page Octave (interval region) to Octave over redirect |
No edit summary |
||
Line 17: | Line 17: | ||
Several notable ones are: | Several notable ones are: | ||
{ | {| class="wikitable" | ||
|- | |||
! Interval | |||
! Size <br>(cents) | |||
! Prime limit | |||
|- | |||
| [[2/1]] | |||
| 1200 | |||
| 2 | |||
|- | |||
| [[1048576/531441]] | |||
| 1176.54 | |||
| rowspan="2" | 3 | |||
|- | |||
| [[531441/262144]] | |||
| 1223.46 | |||
|- | |||
| [[160/81]] | |||
| 1178.49 | |||
| rowspan="2" | 5 | |||
|- | |||
| [[81/40]] | |||
| 1221.51 | |||
|- | |||
| [[35/18]] | |||
| 1151.23 | |||
| rowspan="10" | 7 | |||
|- | |||
| [[96/49]] | |||
| 1164.30 | |||
|- | |||
| [[49/25]] | |||
| 1165.02 | |||
|- | |||
| [[63/32]] | |||
| 1172.74 | |||
|- | |||
| [[125/63]] | |||
| 1186.21 | |||
|- | |||
| [[252/125]] | |||
| 1213.79 | |||
|- | |||
| [[128/63]] | |||
| 1227.26 | |||
|- | |||
| [[100/49]] | |||
| 1234.98 | |||
|- | |||
| [[49/24]] | |||
| 1235.70 | |||
|- | |||
| [[72/35]] | |||
| 1248.77 | |||
|} | |||
== In tempered scales == | == In tempered scales == | ||
Line 25: | Line 79: | ||
|- | |- | ||
! EDO | ! EDO | ||
! Suboctaves | ! colspan="2"| Suboctaves | ||
|- | |||
| [[21edo|21]] | |||
| 20\21 | |||
| 1142.9{{c}} | |||
|- | |||
| [[22edo|22]] | |||
| 21\22 | |||
| 1145.5{{c}} | |||
|- | |- | ||
| | | [[23edo|23]] | ||
| | | 22\23 | ||
| 1147.8{{c}} | |||
|- | |- | ||
| 24 | | [[24edo|24]] | ||
| 23\24 | |||
| 1150{{c}} | | 1150{{c}} | ||
|- | |- | ||
| 25 | | [[25edo|25]] | ||
| 24\25 | |||
| 1152{{c}} | | 1152{{c}} | ||
|- | |- | ||
| 26 | | [[26edo|26]] | ||
| | | 25\26 | ||
| 1153.8{{c}} | |||
|- | |||
| [[27edo|27]] | |||
| 26\27 | |||
| 1155.6{{c}} | |||
|- | |||
| [[28edo|28]] | |||
| 27\28 | |||
| 1157.1{{c}} | |||
|- | |||
| [[29edo|29]] | |||
| 28\29 | |||
| 1158.6{{c}} | |||
|- | |- | ||
| | | [[30edo|30]] | ||
| | | 29\30 | ||
| 1160{{c}} | |||
|- | |- | ||
| | | [[31edo|31]] | ||
| | | 30\31 | ||
| 1161.3{{c}} | |||
|- | |- | ||
| | | [[32edo|32]] | ||
| | | 31\32 | ||
| 1162.5{{c}} | |||
|- | |- | ||
| | | [[33edo|33]] | ||
| | | 32\33 | ||
| 1163.6{{c}} | |||
|- | |- | ||
| | | [[34edo|34]] | ||
| | | 33\34 | ||
| 1164.7{{c}} | |||
|- | |- | ||
| 53 | | [[35edo|35]] | ||
| 1155{{c}} | | 34\35 | ||
| 1165.7{{c}} | |||
|- | |||
| [[36edo|36]] | |||
| 35\36 | |||
| 1166.7{{c}} | |||
|- | |||
| [[37edo|37]] | |||
| 36\37 | |||
| 1167.6{{c}} | |||
|- | |||
| [[38edo|38]] | |||
| 37\38 | |||
| 1168.4{{c}} | |||
|- | |||
| [[39edo|39]] | |||
| 38\39 | |||
| 1169.2{{c}} | |||
|- | |||
| [[40edo|40]] | |||
| 39\40 | |||
| 1170{{c}} | |||
|- | |||
| [[41edo|41]] | |||
| 39\41 <br>40\41 | |||
| 1141.5{{c}} <br>1170.7{{c}} | |||
|- | |||
| [[42edo|42]] | |||
| 40\42 <br>41\42 | |||
| 1142.9{{c}} <br>1171.4{{c}} | |||
|- | |||
| [[43edo|43]] | |||
| 41\43 <br>42\43 | |||
| 1144.2{{c}} <br>1172.1{{c}} | |||
|- | |||
| [[44edo|44]] | |||
| 42\44 <br>43\44 | |||
| 1145.5{{c}} <br>1172.7{{c}} | |||
|- | |||
| [[45edo|45]] | |||
| 43\45 <br>44\45 | |||
| 1146.7{{c}} <br>1173.3{{c}} | |||
|- | |||
| [[46edo|46]] | |||
| 44\46 <br>45\46 | |||
| 1147.8{{c}} <br>1173.9{{c}} | |||
|- | |||
| [[47edo|47]] | |||
| 45\47 <br>46\47 | |||
| 1148.9{{c}} <br>1174.5{{c}} | |||
|- | |||
| [[48edo|48]] | |||
| 46\48 <br>47\48 | |||
| 1150{{c}} <br>1175{{c}} | |||
|- | |||
| [[49edo|49]] | |||
| 47\49 <br>48\49 | |||
| 1151.0{{c}} <br>1175.5{{c}} | |||
|- | |||
| [[50edo|50]] | |||
| 48\50 <br>49\50 | |||
| 1152{{c}} <br>1176{{c}} | |||
|- | |||
| [[51edo|51]] | |||
| 49\51 <br>50\51 | |||
| 1152.9{{c}} <br>1176.5{{c}} | |||
|- | |||
| [[52edo|52]] | |||
| 50\52 <br>51\52 | |||
| 1153.8{{c}} <br>1176.9{{c}} | |||
|- | |||
| [[53edo|53]] | |||
| 51\53 <br>52\53 | |||
| 1154.7{{c}} <br>1177.4{{c}} | |||
|- | |||
| [[54edo|54]] | |||
| 52\54 <br>53\54 | |||
| 1155.6{{c}} <br>1177.8{{c}} | |||
|- | |||
| [[55edo|55]] | |||
| 53\55 <br>54\55 | |||
| 1156.4{{c}} <br>1178.2{{c}} | |||
|- | |||
| [[56edo|56]] | |||
| 54\56 <br>55\56 | |||
| 1157.1{{c}} <br>1178.6{{c}} | |||
|- | |||
| [[57edo|57]] | |||
| 55\57 <br>56\57 | |||
| 1157.9{{c}} <br>1178.9{{c}} | |||
|- | |||
| [[58edo|58]] | |||
| 56\58 <br>57\58 | |||
| 1158.6{{c}} <br>1179.3{{c}} | |||
|- | |||
| [[59edo|59]] | |||
| 57\59 <br>58\59 | |||
| 1159.3{{c}} <br>1179.7{{c}} | |||
|- | |||
| [[60edo|60]] | |||
| 58\60 <br>59\60 | |||
| 1160{{c}} <br>1180{{c}} | |||
|} | |} | ||
2/1 is also represented perfectly in most temperaments, or the most common tunings thereof, and is mainly involved in octave-reducing intervals (such as saying that, in meantone, four 3/2s (octave-reduced) stack to 5/4). | 2/1 is also represented perfectly in most temperaments, or the most common tunings thereof, and is mainly involved in octave-reducing intervals (such as saying that, in meantone, four 3/2s (octave-reduced) stack to 5/4). | ||
{{Navbox intervals}} | {{Navbox intervals}} |