Octave (interval region): Difference between revisions

Xenllium (talk | contribs)
m Xenllium moved page Octave (interval region) to Octave over redirect
Xenllium (talk | contribs)
No edit summary
Line 17: Line 17:


Several notable ones are:
Several notable ones are:
{{todo|inline=1|complete list}}
{| class="wikitable"
|-
! Interval
! Size <br>(cents)
! Prime limit
|-
| [[2/1]]
| 1200
| 2
|-
| [[1048576/531441]]
| 1176.54
| rowspan="2" | 3
|-
| [[531441/262144]]
| 1223.46
|-
| [[160/81]]
| 1178.49
| rowspan="2" | 5
|-
| [[81/40]]
| 1221.51
|-
| [[35/18]]
| 1151.23
| rowspan="10" | 7
|-
| [[96/49]]
| 1164.30
|-
| [[49/25]]
| 1165.02
|-
| [[63/32]]
| 1172.74
|-
| [[125/63]]
| 1186.21
|-
| [[252/125]]
| 1213.79
|-
| [[128/63]]
| 1227.26
|-
| [[100/49]]
| 1234.98
|-
| [[49/24]]
| 1235.70
|-
| [[72/35]]
| 1248.77
|}


== In tempered scales ==
== In tempered scales ==
Line 25: Line 79:
|-
|-
! EDO
! EDO
! Suboctaves
! colspan="2"| Suboctaves
|-
| [[21edo|21]]
| 20\21
| 1142.9{{c}}
|-
| [[22edo|22]]
| 21\22
| 1145.5{{c}}
|-
|-
| 22
| [[23edo|23]]
| 1145{{c}}
| 22\23
| 1147.8{{c}}
|-
|-
| 24
| [[24edo|24]]
| 23\24
| 1150{{c}}
| 1150{{c}}
|-
|-
| 25
| [[25edo|25]]
| 24\25
| 1152{{c}}
| 1152{{c}}
|-
|-
| 26
| [[26edo|26]]
| 1154{{c}}
| 25\26
| 1153.8{{c}}
|-
| [[27edo|27]]
| 26\27
| 1155.6{{c}}
|-
| [[28edo|28]]
| 27\28
| 1157.1{{c}}
|-
| [[29edo|29]]
| 28\29
| 1158.6{{c}}
|-
|-
| 27
| [[30edo|30]]
| 1156{{c}}
| 29\30
| 1160{{c}}
|-
|-
| 29
| [[31edo|31]]
| 1159{{c}}
| 30\31
| 1161.3{{c}}
|-
|-
| 31
| [[32edo|32]]
| 1161{{c}}
| 31\32
| 1162.5{{c}}
|-
|-
| 34
| [[33edo|33]]
| 1165{{c}}
| 32\33
| 1163.6{{c}}
|-
|-
| 41
| [[34edo|34]]
| 1142{{c}}, 1171{{c}}
| 33\34
| 1164.7{{c}}
|-
|-
| 53
| [[35edo|35]]
| 1155{{c}}, 1177{{c}}
| 34\35
| 1165.7{{c}}
|-
| [[36edo|36]]
| 35\36
| 1166.7{{c}}
|-
| [[37edo|37]]
| 36\37
| 1167.6{{c}}
|-
| [[38edo|38]]
| 37\38
| 1168.4{{c}}
|-
| [[39edo|39]]
| 38\39
| 1169.2{{c}}
|-
| [[40edo|40]]
| 39\40
| 1170{{c}}
|-
| [[41edo|41]]
| 39\41 <br>40\41
| 1141.5{{c}} <br>1170.7{{c}}
|-
| [[42edo|42]]
| 40\42 <br>41\42
| 1142.9{{c}} <br>1171.4{{c}}
|-
| [[43edo|43]]
| 41\43 <br>42\43
| 1144.2{{c}} <br>1172.1{{c}}
|-
| [[44edo|44]]
| 42\44 <br>43\44
| 1145.5{{c}} <br>1172.7{{c}}
|-
| [[45edo|45]]
| 43\45 <br>44\45
| 1146.7{{c}} <br>1173.3{{c}}
|-
| [[46edo|46]]
| 44\46 <br>45\46
| 1147.8{{c}} <br>1173.9{{c}}
|-
| [[47edo|47]]
| 45\47 <br>46\47
| 1148.9{{c}} <br>1174.5{{c}}
|-
| [[48edo|48]]
| 46\48 <br>47\48
| 1150{{c}} <br>1175{{c}}
|-
| [[49edo|49]]
| 47\49 <br>48\49
| 1151.0{{c}} <br>1175.5{{c}}
|-
| [[50edo|50]]
| 48\50 <br>49\50
| 1152{{c}} <br>1176{{c}}
|-
| [[51edo|51]]
| 49\51 <br>50\51
| 1152.9{{c}} <br>1176.5{{c}}
|-
| [[52edo|52]]
| 50\52 <br>51\52
| 1153.8{{c}} <br>1176.9{{c}}
|-
| [[53edo|53]]
| 51\53 <br>52\53
| 1154.7{{c}} <br>1177.4{{c}}
|-
| [[54edo|54]]
| 52\54 <br>53\54
| 1155.6{{c}} <br>1177.8{{c}}
|-
| [[55edo|55]]
| 53\55 <br>54\55
| 1156.4{{c}} <br>1178.2{{c}}
|-
| [[56edo|56]]
| 54\56 <br>55\56
| 1157.1{{c}} <br>1178.6{{c}}
|-
| [[57edo|57]]
| 55\57 <br>56\57
| 1157.9{{c}} <br>1178.9{{c}}
|-
| [[58edo|58]]
| 56\58 <br>57\58
| 1158.6{{c}} <br>1179.3{{c}}
|-
| [[59edo|59]]
| 57\59 <br>58\59
| 1159.3{{c}} <br>1179.7{{c}}
|-
| [[60edo|60]]
| 58\60 <br>59\60
| 1160{{c}} <br>1180{{c}}
|}
|}


2/1 is also represented perfectly in most temperaments, or the most common tunings thereof, and is mainly involved in octave-reducing intervals (such as saying that, in meantone, four 3/2s (octave-reduced) stack to 5/4).
2/1 is also represented perfectly in most temperaments, or the most common tunings thereof, and is mainly involved in octave-reducing intervals (such as saying that, in meantone, four 3/2s (octave-reduced) stack to 5/4).
{{todo|inline=1|complete table}}


{{Navbox intervals}}
{{Navbox intervals}}