33edo: Difference between revisions

Inthar (talk | contribs)
ArrowHead294 (talk | contribs)
m Theory: Move to notation
Line 2: Line 2:
{{EDO intro|33}}
{{EDO intro|33}}
== Theory ==
== Theory ==
Because the [[chromatic semitone]] in 33edo is 1 step, 33edo can be notated using only naturals, sharps, and flats. However, many key signatures will require double- and triple-sharps and flats, which means that notation in distant keys can be very unwieldy.
=== Harmonics ===
=== Harmonics ===
33edo is not especially good at representing all rational intervals in the [[7-limit]], but it does very well on the 7-limit [[k*N subgroups|3*33 subgroup]] 2.27.15.21.11.13. On this subgroup it tunes things to the same tuning as [[99edo]], and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc. In particular, the [[Subgroup temperaments#Terrain|terrain]] 2.7/5.9/5 subgroup temperament can be tuned via the 5\33 generator. The full system of harmony provides the optimal patent val for [[Mint_temperaments#Slurpee|slurpee temperament]] in the 5-, 7-, 11-, and 13-limits.
33edo is not especially good at representing all rational intervals in the [[7-limit]], but it does very well on the 7-limit [[k*N subgroups|3*33 subgroup]] 2.27.15.21.11.13. On this subgroup it tunes things to the same tuning as [[99edo]], and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc. In particular, the [[Subgroup temperaments#Terrain|terrain]] 2.7/5.9/5 subgroup temperament can be tuned via the 5\33 generator. The full system of harmony provides the optimal patent val for [[Mint_temperaments#Slurpee|slurpee temperament]] in the 5-, 7-, 11-, and 13-limits.