87edo: Difference between revisions

Theory: "purely consistent" meant exactly the same thing as what immediately followed
ArrowHead294 (talk | contribs)
mNo edit summary
Line 9: Line 9:
The equal temperament [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]), {{monzo| 26 -12 -3 }} ([[misty comma]]), and {{monzo| 46 -29 }} ([[29-comma]]) in the 5-limit, in addition to [[245/243]], [[1029/1024]], [[3136/3125]], and [[5120/5103]] in the 7-limit. In the 13-limit, notably [[196/195]], [[325/324]], [[352/351]], [[364/363]], [[385/384]], [[441/440]], [[625/624]], [[676/675]], and [[1001/1000]].  
The equal temperament [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]), {{monzo| 26 -12 -3 }} ([[misty comma]]), and {{monzo| 46 -29 }} ([[29-comma]]) in the 5-limit, in addition to [[245/243]], [[1029/1024]], [[3136/3125]], and [[5120/5103]] in the 7-limit. In the 13-limit, notably [[196/195]], [[325/324]], [[352/351]], [[364/363]], [[385/384]], [[441/440]], [[625/624]], [[676/675]], and [[1001/1000]].  


87edo is a particularly good tuning for [[rodan]], the 41 & 46 temperament. The 8/7 generator of 17\87 is a remarkable 0.00062 cents sharper than the 13-limit [[POTE generator]] and is close to the [[11-limit]] POTE generator also. Also, the 32\87 generator for [[Kleismic family #Clyde|clyde temperament]] is 0.04455 cents sharp of the 7-limit POTE generator.
87edo is a particularly good tuning for [[rodan]], the {{nowrap|41 & 46}} temperament. The 8/7 generator of 17\87 is a remarkable 0.00062 cents sharper than the 13-limit [[POTE generator]] and is close to the [[11-limit]] POTE generator also. Also, the 32\87 generator for [[Kleismic family #Clyde|clyde temperament]] is 0.04455 cents sharp of the 7-limit POTE generator.


=== Prime harmonics ===
=== Prime harmonics ===
Line 363: Line 363:
| 15625/15552, 67108864/66430125
| 15625/15552, 67108864/66430125
| {{mapping| 87 138 202 }}
| {{mapping| 87 138 202 }}
| −0.299
| −0.299
| 0.455
| 0.455
| 3.30
| 3.30
Line 384: Line 384:
| 196/195, 245/243, 352/351, 364/363, 625/624
| 196/195, 245/243, 352/351, 364/363, 625/624
| {{mapping| 87 138 202 244 301 322 }}
| {{mapping| 87 138 202 244 301 322 }}
| −0.011
| −0.011
| 0.625
| 0.625
| 4.53
| 4.53
Line 391: Line 391:
| 154/153, 196/195, 245/243, 273/272, 364/363, 375/374
| 154/153, 196/195, 245/243, 273/272, 364/363, 375/374
| {{mapping| 87 138 202 244 301 322 356 }}
| {{mapping| 87 138 202 244 301 322 356 }}
| −0.198
| −0.198
| 0.738
| 0.738
| 5.35
| 5.35
Line 398: Line 398:
| 154/153, 196/195, 210/209, 245/243, 273/272, 286/285, 364/363
| 154/153, 196/195, 210/209, 245/243, 273/272, 286/285, 364/363
| {{mapping| 87 138 202 244 301 322 356 370 }}
| {{mapping| 87 138 202 244 301 322 356 370 }}
| −0.348
| −0.348
| 0.796
| 0.796
| 5.77
| 5.77
Line 506: Line 506:
| [[Mystery]]
| [[Mystery]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


87 can serve as a MOS in these:
87 can serve as a MOS in these:


* [[Avicenna (temperament)|Avicenna]] ([[Breed|87&amp;270]]) {{multival| 24 -9 -66 12 27 … }}
* [[Avicenna (temperament)|Avicenna]] ([[Breed|87 &amp; 270]]) {{multival| 24 -9 -66 12 27 … }}
* [[Breed|87&amp;494]] {{multival| 51 -1 -133 11 32 … }}
* [[Breed|87 &amp; 494]] {{multival| 51 -1 -133 11 32 … }}


== Scales ==
== Scales ==
Line 669: Line 669:
== Music ==
== Music ==
; [[Gene Ward Smith]]
; [[Gene Ward Smith]]
* ''Pianodactyl'' (archived 2010) &ndash; [https://soundcloud.com/genewardsmith/pianodactyl SoundCloud] | [http://www.archive.org/details/Pianodactyl detail] | [http://www.archive.org/download/Pianodactyl/pianodactyl.mp3 play] &ndash; rodan[26] in 87edo tuning
* ''Pianodactyl'' (archived 2010) [https://soundcloud.com/genewardsmith/pianodactyl SoundCloud] | [http://www.archive.org/details/Pianodactyl detail] | [http://www.archive.org/download/Pianodactyl/pianodactyl.mp3 play] rodan[26] in 87edo tuning


[[Category:Zeta|##]] <!-- 2-digit number -->
[[Category:Zeta|##]] <!-- 2-digit number -->