9/8: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Infobox Interval | {{Infobox Interval | ||
| Name = whole tone, major second | | Name = Pythagorean whole tone, Pythagorean major second | ||
| Color name = w2, wa 2nd | | Color name = w2, wa 2nd | ||
| Sound = jid_9_8_pluck_adu_dr220.mp3 | | Sound = jid_9_8_pluck_adu_dr220.mp3 | ||
Line 7: | Line 7: | ||
{{Wikipedia|Major second}} | {{Wikipedia|Major second}} | ||
'''9/8''' is the Pythagorean '''whole tone''' or '''major second''', measuring approximately 203.9¢. It can be arrived at by stacking two just perfect fifths ([[3/2]]) and reducing the result by one octave. However, it is also a relatively low overtone in its own right, octave-reduced. It can be treated as a dissonance or a consonance, depending on compositional context, though because of its relatively close proximity to the [[unison]], it is the largest [[superparticular]] interval known to cause crowding, which lends more to it being considered a type of dissonance- at least in historical Western Classical traditions and in the xenharmonic traditions derived from them. | '''9/8''' is the '''Pythagorean''' '''whole tone''' or '''major second''', measuring approximately 203.9¢. It can be arrived at by stacking two just perfect fifths ([[3/2]]) and reducing the result by one octave. However, it is also a relatively low overtone in its own right, octave-reduced. It can be treated as a dissonance or a consonance, depending on compositional context, though because of its relatively close proximity to the [[unison]], it is the largest [[superparticular]] interval known to cause crowding, which lends more to it being considered a type of dissonance- at least in historical Western Classical traditions and in the xenharmonic traditions derived from them. | ||
Two 9/8's stacked produce [[81/64]], the Pythagorean major third, a rather bright major third of approximately 407.8¢. However, a 9/8 plus the minor whole tone [[10/9]] yields [[5/4]]. This distinction, between a major whole tone and minor whole tone, has been completely obliterated in [[12edo]], and so we are unaccustomed to thinking of more than one size of whole tone comprising a major third. Other systems that temper out this difference (which is [[81/80]], the syntonic comma of about 21.5¢), such as [[19edo]], [[26edo]], and [[31edo]], are called [[meantone]] temperaments. | Two 9/8's stacked produce [[81/64]], the Pythagorean major third, a rather bright major third of approximately 407.8¢. However, a 9/8 plus the minor whole tone [[10/9]] yields [[5/4]]. This distinction, between a major whole tone and minor whole tone, has been completely obliterated in [[12edo]], and so we are unaccustomed to thinking of more than one size of whole tone comprising a major third. Other systems that temper out this difference (which is [[81/80]], the syntonic comma of about 21.5¢), such as [[19edo]], [[26edo]], and [[31edo]], are called [[meantone]] temperaments. |