39edo: Difference between revisions

BudjarnLambeth (talk | contribs)
m Add links, add clarify
m Theory: improve linking. This Secor is George Secor, not that *secor*
Line 5: Line 5:
39edo's [[3/2|perfect fifth]] is 5.8 cents sharp. Together with its best [[5/4|classical major third]] which is the familiar 400 cents of [[12edo]], we get a system which [[tempering out|tempers out]] the [[diesis]] (128/125) and the [[amity comma]] (1600000/1594323). We have two choices for a [[map]] for [[7/1|7]], but the sharp one works better with the [[3/1|3]] and [[5/1|5]], which adds [[64/63]] and [[126/125]] to the list. [[Tempering out]] both 128/125 and 64/63 makes 39et, in some few ways, allied to [[12et]] in [[support]]ing [[augene]], and is in fact, an excellent choice for an augene tuning, but one difference is that 39et has a fine [[11/1|11]], and adding it to consideration we find that the equal temperament tempers out [[99/98]] and [[121/120]] also. This choice for 39et is the 39d [[val]] {{val| 39 62 91 '''110''' 135 }}.
39edo's [[3/2|perfect fifth]] is 5.8 cents sharp. Together with its best [[5/4|classical major third]] which is the familiar 400 cents of [[12edo]], we get a system which [[tempering out|tempers out]] the [[diesis]] (128/125) and the [[amity comma]] (1600000/1594323). We have two choices for a [[map]] for [[7/1|7]], but the sharp one works better with the [[3/1|3]] and [[5/1|5]], which adds [[64/63]] and [[126/125]] to the list. [[Tempering out]] both 128/125 and 64/63 makes 39et, in some few ways, allied to [[12et]] in [[support]]ing [[augene]], and is in fact, an excellent choice for an augene tuning, but one difference is that 39et has a fine [[11/1|11]], and adding it to consideration we find that the equal temperament tempers out [[99/98]] and [[121/120]] also. This choice for 39et is the 39d [[val]] {{val| 39 62 91 '''110''' 135 }}.


A particular anecdote with this system was made in the ''Teliochordon'', in 1788 by [[Charles Clagget]] (Ireland, 1740?–1820), a little extract [http://ml.oxfordjournals.org/content/76/2/291.extract.jpg here].
A particular anecdote with this system was made in the ''Teliochordon'', in 1788 by {{w|Charles Clagget}} (Ireland, 1740?–1820), a little extract [http://ml.oxfordjournals.org/content/76/2/291.extract.jpg here].


As a [[superpyth]] system, 39edo is intermediate between [[17edo]] and [[22edo]] {{nowrap|(39 {{=}} 17 + 22)}}. The specific 7-limit variant supported by 39et is [[quasisuper]]. While 17edo is superb for melody (as documented by [[George Secor]]), it does not approximate the 5th harmonic at all and only poorly approximates the 7th. 22edo is much better for 5-limit and 7-limit harmony but is less effective for melody because the diatonic semitone is quartertone-sized, which results in a very strange-sounding [[diatonic scale]]. 39edo offers a compromise, since it still supports good 5- and 7-limit harmonies (though less close than 22edo), while at the same time having a diatonic semitone of 61.5 cents, as the ideal diatonic semitone for melody is somewhere in between 60 and 80 cents, i.e. a third tone, by [[Secor]]'s estimates.  
As a [[superpyth]] system, 39edo is intermediate between [[17edo]] and [[22edo]] {{nowrap|(39 {{=}} 17 + 22)}}. The specific 7-limit variant supported by 39et is [[quasisuper]]. While 17edo is superb for melody (as documented by [[George Secor]]), it does not approximate the 5th harmonic at all and only poorly approximates the 7th. 22edo is much better for 5-limit and 7-limit harmony but is less effective for melody because the diatonic semitone is quartertone-sized, which results in a very strange-sounding [[5L 2s|diatonic scale]]. 39edo offers a compromise, since it still supports good 5- and 7-limit harmonies (though less close than 22edo), while at the same time having a diatonic semitone of 61.5 cents, as the ideal diatonic semitone for melody is somewhere in between 60 and 80 cents, i.e. a third tone, by Secor's estimates.  


Alternatively, if we take 22\39 as a fifth, 39edo can be used as a tuning of [[mavila]], and from that point of view it seems to have attracted the attention of the [[Armodue]] school, an Italian group that use the scheme of [[7L 2s|superdiatonic]] LLLsLLLLs like a base scale for notation and theory, suited in [[16edo]], and allied systems: [[25edo]] [1/3-tone 3;2]; [[41edo]] [1/5-tone 5;3]; and [[57edo]] [1/7-tone 7;4]. The [[hornbostel]] temperament is included too with: [[23edo]] [1/3-tone 3;1]; 39edo [1/5-tone 5;2] & [[62edo]] [1/8-tone 8;3]. The mavila fifth in 39edo like all mavila fifths is very, very flat, in this case, 25 cents flat.  
Alternatively, if we take 22\39 as a fifth, 39edo can be used as a tuning of [[mavila]], and from that point of view it seems to have attracted the attention of the [[Armodue]] school, an Italian group that use the scheme of [[7L 2s|superdiatonic]] LLLsLLLLs like a base scale for notation and theory, suited in [[16edo]], and allied systems: [[25edo]] [1/3-tone 3;2]; [[41edo]] [1/5-tone 5;3]; and [[57edo]] [1/7-tone 7;4]. The [[hornbostel]] temperament is included too with: [[23edo]] [1/3-tone 3;1]; 39edo [1/5-tone 5;2] & [[62edo]] [1/8-tone 8;3]. The mavila fifth in 39edo like all mavila fifths is very, very flat, in this case, 25 cents flat.