53edo: Difference between revisions

Godtone (talk | contribs)
m Theory: prime 41 is very accurate so we definitely want to show the 41-limit if we are showing the 37-limit, also 101 is okay
Godtone (talk | contribs)
Line 711: Line 711:
{{Harmonics in equal|53|columns=4|start=20}}
{{Harmonics in equal|53|columns=4|start=20}}


This make 53edo excellent (for its size) in the 2.3.5.7.11.13.19.23.37.41.71.73.79.83 subgroup, although some higher error primes like 11 and 23 require the right context to be convincing.
This make 53edo excellent (for its size) in the 2.3.5.7.11.13.19.23.37.41.71.73(.79.83.101) subgroup, although some higher error primes like 11 and 23 require the right context to be convincing.


Note that the high primes, in [[rooted]] (/2<sup>''n''</sup>) position, essentially act as alternate interpretations of [[LCJI]] intervals, if you want to force a rooted interpretation; namely: [[71/64]] as ~[[10/9]], [[73/64]] as ~[[8/7]], [[79/64]] as ~[[16/13]], and perhaps most questionably in the context of 53edo, [[83/64]] as ~[[13/10]].
Note that the high primes, in [[rooted]] (/2<sup>''n''</sup>) position, essentially act as alternate interpretations of [[LCJI]] intervals, if you want to force a rooted interpretation; namely: [[71/64]] as ~[[10/9]], [[73/64]] as ~[[8/7]], [[79/64]] as ~[[16/13]], and perhaps most questionably in the context of 53edo, [[83/64]] as ~[[13/10]].