Patent val/Properties: Difference between revisions

ArrowHead294 (talk | contribs)
m Formatting
m Don't abuse nowrap across commas (punctuation)
Line 15: Line 15:
\frac {v_{\pi (q)} - 1/2}{\log_2 (q)} < n < \frac {v_{\pi (q)} + 1/2}{\log_2 (q)} </math>
\frac {v_{\pi (q)} - 1/2}{\log_2 (q)} < n < \frac {v_{\pi (q)} + 1/2}{\log_2 (q)} </math>


Denote the solution sets as ''N''<sub>1</sub>, ''N''<sub>2</sub>, …, ''N''<sub>&pi;(''p'')</sub>. Find their {{w|intersection (set theory)|intersection}} ''N'', that is,  
Denote the solution sets as ''N''<sub>1</sub>, ''N''<sub>2</sub>, …, ''N''<sub>π(''p'')</sub>. Find their {{w|intersection (set theory)|intersection}} ''N'', that is,  


<math> \displaystyle
<math> \displaystyle
Line 40: Line 40:
# For any distinct primes ''q''<sub>''i''</sub>, ''q''<sub>''j''</sub> in ''Q'', there is ''not'' a point of ''n'' at which both ''v''<sub>''i''</sub> and ''v''<sub>''j''</sub> get an increment;  
# For any distinct primes ''q''<sub>''i''</sub>, ''q''<sub>''j''</sub> in ''Q'', there is ''not'' a point of ''n'' at which both ''v''<sub>''i''</sub> and ''v''<sub>''j''</sub> get an increment;  


where an increment of ''f''(''x'') at ''x''<sub>0</sub> is defined as lim {{nowrap|''x'' &rarr; ''x''<sub>0</sub><sup>+</sup> ''f''(''x'')}} {{=}} {{nowrap|lim ''x'' &rarr; ''x''<sub>0</sub><sup>&minus;</sup> ''f''(''x'') + 1}}.  
where an increment of ''f''(''x'') at ''x''<sub>0</sub> is defined as lim {{nowrap|''x'' ''x''<sub>0</sub><sup>+</sup> ''f''(''x'')}} {{=}} {{nowrap|lim ''x'' ''x''<sub>0</sub><sup>&minus;</sup> ''f''(''x'') + 1}}.  


<nowiki />#1 holds immediately following the definition of the round function, and the point is ''n'' {{=}}(''v''<sub>''i''</sub> + 1/2)/log<sub>2</sub>(''q''<sub>''i''</sub>).  
<nowiki/>#1 holds immediately following the definition of the round function, and the point is {{nowrap|''n'' {{=}} (''v''<sub>''i''</sub> + 1/2)/log<sub>2</sub>(''q''<sub>''i''</sub>)}}.  


To prove <nowiki>#2</nowiki>, let us assume there exists such an ''n''. By the definition of the round function, an increment of {{nowrap|''y'' {{=}} round(''x'')}} occurs only if {{nowrap|2''x'' ∈ '''Z'''}}. Thus, for any distinct primes {{nowrap|''q''<sub>''i''</sub>|''q''<sub>''j''</sub> ∈ ''Q''|2''n'' log<sub>2</sub>(''q''<sub>''i''</sub>) ∈ '''Z'''|and 2''n'' log<sub>2</sub>(''q''<sub>''j''</sub>) ∈ '''Z'''}}. If that is the case, then their quotient {{nowrap|(2''n'' log<sub>2</sub>(''q''<sub>''i''</sub>))/(2''n'' log<sub>2</sub>(''q''<sub>''j''</sub>)) {{=}} log<sub>''q''<sub>''j''</sub></sub>(''q''<sub>''i''</sub>) ∈ '''Q'''}}, which contradicts {{w|Gelfond–Schneider theorem}}. Therefore, the hypothesis is false, and such an ''n'' does not exist.
To prove #2, let us assume there exists such an ''n''. By the definition of the round function, an increment of {{nowrap|''y'' {{=}} round(''x'')}} occurs only if {{nowrap|2''x'' ∈ '''Z'''}}. Thus, for any distinct primes {{nowrap|''q''<sub>''i''</sub>, ''q''<sub>''j''</sub> ∈ ''Q''}}, {{nowrap|2''n'' log<sub>2</sub>(''q''<sub>''i''</sub>) ∈ '''Z'''}}, and {{nowrap|2''n'' log<sub>2</sub>(''q''<sub>''j''</sub>) ∈ '''Z'''}}. If that is the case, then their quotient {{nowrap|(2''n'' log<sub>2</sub>(''q''<sub>''i''</sub>))/(2''n'' log<sub>2</sub>(''q''<sub>''j''</sub>)) {{=}} log<sub>''q''<sub>''j''</sub></sub>(''q''<sub>''i''</sub>) ∈ '''Q'''}}, which contradicts {{w|Gelfond–Schneider theorem}}. Therefore, the hypothesis is false, and such an ''n'' does not exist.
}}
}}