540edo: Difference between revisions
This makes for an interesting comparison with 270edo |
+a discussion about the 43- to 53-limit, with the prime table extended to facilitate comparing with 270edo |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
Since 540 = 2 × 270 and 540 = 45 × 12, 540edo contains [[270edo]] and [[12edo]] as subsets, both being important [[zeta edo]]s. It is [[enfactoring|enfactored]] in the 13-limit, with the same tuning as 270edo, but it makes for a reasonable 17-, 19- and 23-limit system, and | Since 540 = 2 × 270 and 540 = 45 × 12, 540edo contains [[270edo]] and [[12edo]] as subsets, both being important [[zeta edo]]s. It is [[enfactoring|enfactored]] in the 13-limit, with the same tuning as 270edo, but it makes for a reasonable 17-, 19- and 23-limit system, and beyond. It is, however, no longer [[consistent]] in the [[15-odd-limit]], all because of [[15/13]] being 1.14 cents sharp of just. | ||
The equal temperament [[tempering out|tempers out]] [[1156/1155]] and [[2601/2600]] in the 17-limit; [[1216/1215]], [[1331/1330]], [[1445/1444]] and [[1729/1728]] in the 19-limit; [[1105/1104]] and [[1496/1495]] in the 23-limit. Although it does quite well in these limits, it is not as ''efficient'' as 270edo's original mappings, as it has greater relative errors (→ [[#Regular temperament properties]]). It is therefore a question of whether one thinks these tuning improvements and differently supplied [[essentially tempered chord]]s are worth the load of all the extra notes. | The equal temperament [[tempering out|tempers out]] [[1156/1155]] and [[2601/2600]] in the 17-limit; [[1216/1215]], [[1331/1330]], [[1445/1444]] and [[1729/1728]] in the 19-limit; [[1105/1104]] and [[1496/1495]] in the 23-limit. Although it does quite well in these limits, it is not as ''efficient'' as 270edo's original mappings, as it has greater relative errors (→ [[#Regular temperament properties]]). It is therefore a question of whether one thinks these tuning improvements and differently supplied [[essentially tempered chord]]s are worth the load of all the extra notes. | ||
The approximation to [[29/1|29]] and [[31/1|31]] are relatively weak, but [[37/1|37]], [[41/1|41]] and [[43/1|43]] are quite spot on, with the 43 coming from 270edo. For this reason, we may consider it as a full [[43-limit]] system. For all the primes starting with 29, it removes the distinction of otonal and utonal [[superparticular ratio|superparticular]] pairs (e.g. 29/28 vs 30/29 for prime 29) by tempering out the corresponding [[square superparticular]]s, which is responsible for its slightly flat-tending tuning profile. Prime [[47/1|47]] does not have that privilege and falls practically halfway between, though the sharp mapping might be preferred to keep [[47/46]] wider than [[48/47]]. As a compensation, you do get a spot-on prime [[53/1|53]] for free. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|540|columns= | {{Harmonics in equal|540|columns=12}} | ||
{{Harmonics in equal|540|columns=12|start=13|collapsed=true|title=Approximation of prime harmonics in 540edo (continued)}} | |||
=== Subsets and supersets === | === Subsets and supersets === |