1920edo: Difference between revisions
Cleanup; clarify the title row of the rank-2 temp table; -redundant categories |
Adopt template: Factorization |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
1920edo is | 1920edo is [[consistency|distinctly consistent]] through the [[25-odd-limit]], and in terms of 23-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]], only [[1578edo|1578]] and [[1889edo|1889]] are both smaller and with a lower relative error. In the 29-limit, only 1578 beats it, and in the 31-, 37-, 41-, 43- and 47-limit, nothing beats it. Because of this and because it is a very composite number divisible by 12, it is another candidate for [[interval size measure]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
Line 9: | Line 9: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
Since 1920 factors into | Since 1920 factors into {{factorization|1920}}, 1920edo has subset edos {{EDOs| 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 128, 160, 192, 240, 320, 384, 480, 640, 960 }}. | ||
== Regular temperament properties == | == Regular temperament properties == |