17-limit: Difference between revisions
Rework intro and improve linking |
+subsets and supersets |
||
Line 1: | Line 1: | ||
{{Prime limit navigation|17}} | {{Prime limit navigation|17}} | ||
The '''17-limit''' consists of [[just intonation]] [[interval]]s whose [[ratio]]s contain no [[prime factor]]s higher than 17. | The '''17-limit''' consists of [[just intonation]] [[interval]]s whose [[ratio]]s contain no [[prime factor]]s higher than 17. It is the 7th [[prime limit]] and is thus a superset of the [[13-limit]] and a subset of the [[19-limit]]. It adds to the [[13-limit]] a semitone of about 105¢ – [[17/16]] – and several other intervals between the 17th [[harmonic]] and the lower ones. | ||
The 17 | The 17-limit is a [[Rank and codimension|rank-7]] system, and can be modeled in a 6-dimensional [[lattice]], with the primes 3, 5, 7, 11, 13, and 17 represented by each dimension. The prime 2 does not appear in the typical 17-limit lattice because octave equivalence is presumed. If octave equivalence is not presumed, a seventh dimension is needed. | ||
== Edo approximations == | == Edo approximations == | ||
Line 133: | Line 133: | ||
== See also == | == See also == | ||
* [[17-odd-limit]] | * [[17-odd-limit]] | ||
* [[Seventeen limit tetrads]] | * [[Seventeen limit tetrads]] | ||
[[Category:17-limit| ]] <!-- main article --> | [[Category:17-limit| ]] <!-- main article --> |