Breedsmic temperaments: Difference between revisions
Update links |
Update keys |
||
Line 1: | Line 1: | ||
This page discusses miscellaneous rank-2 | This page discusses miscellaneous [[Rank-2 temperament|rank-2]] [[temperament]]s [[tempering out]] the [[breedsma]], {{monzo| -5 -1 -2 4 }} = 2401/2400. This is the amount by which two [[49/40]] intervals exceed [[3/2]], and by which two [[60/49]] intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system ([[12edo]], for example) which does not possess a neutral third cannot be tempering out the breedsma. | ||
The breedsma is also the amount by which four stacked [[10/7]] intervals exceed 25/6: 10000/2401 × 2401/2400 = 10000/2400 = 25/6, which is two octaves above the classic chromatic semitone, [[25/24]]. We might note also that 49/40 | The breedsma is also the amount by which four stacked [[10/7]] intervals exceed 25/6: 10000/2401 × 2401/2400 = 10000/2400 = 25/6, which is two octaves above the classic chromatic semitone, [[25/24]]. We might note also that (49/40)(10/7) = 7/4 and (49/40)(10/7)<sup>2</sup> = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40~60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system. | ||
Temperaments discussed elsewhere include: | Temperaments discussed elsewhere include: | ||
Line 26: | Line 26: | ||
{{Main| Hemififths }} | {{Main| Hemififths }} | ||
Hemififths tempers out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator, with [[99edo | Hemififths tempers out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator, with [[99edo]] and [[140edo]] providing good tunings, and [[239edo]] an even better one; and other possible tunings are 160<sup>(1/25)</sup>, giving just 5's, the 7- and 9-odd-limit minimax tuning, or 14<sup>(1/13)</sup>, giving just 7's. It may be called the 41 & 58 temperament. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17- and 24-note mos are suited. The full force of this highly accurate temperament can be found using the 41-note mos or even the 34-note 2mos{{clarify}}. | ||
By adding [[243/242]] (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. | By adding [[243/242]] (which also means [[441/440]], [[540/539]] and [[896/891]]) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. [[99edo]] is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding [[144/143]] brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be [[16/13]]. 99 remains a good tuning choice. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 5120/5103 | [[Comma list]]: 2401/2400, 5120/5103 | ||
{{Mapping|legend=1| 1 1 -5 -1 | 0 2 25 13 }} | |||
{{Multival|legend=1| 2 25 13 35 15 -40 }} | {{Multival|legend=1| 2 25 13 35 15 -40 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 351.477 | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo|1/5 0 1/25}} | * [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo| 1/5 0 1/25 }} | ||
: | : {{monzo list| 1 0 0 0 | 7/5 0 2/25 0 | 0 0 1 0 | 8/5 0 13/25 0 }} | ||
: | : [[Eigenmonzo basis|Eigenmonzo (unchanged-interval) basis]]: 2.5 | ||
[[Algebraic generator]]: (2 + sqrt(2))/2 | [[Algebraic generator]]: (2 + sqrt(2))/2 | ||
Line 56: | Line 56: | ||
Comma list: 243/242, 441/440, 896/891 | Comma list: 243/242, 441/440, 896/891 | ||
Mapping: | Mapping: {{mapping| 1 1 -5 -1 2 | 0 2 25 13 5 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.521 | ||
{{Optimal ET sequence|legend=1| 17c, 41, 58, 99e }} | {{Optimal ET sequence|legend=1| 17c, 41, 58, 99e }} | ||
Line 69: | Line 69: | ||
Comma list: 144/143, 196/195, 243/242, 364/363 | Comma list: 144/143, 196/195, 243/242, 364/363 | ||
Mapping: | Mapping: {{mapping| 1 1 -5 -1 2 4 | 0 2 25 13 5 -1 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.573 | ||
{{Optimal ET sequence|legend=1| 17c, 41, 58, 99ef, 157eff }} | {{Optimal ET sequence|legend=1| 17c, 41, 58, 99ef, 157eff }} | ||
Line 82: | Line 82: | ||
Comma list: 2401/2400, 3388/3375, 5120/5103 | Comma list: 2401/2400, 3388/3375, 5120/5103 | ||
Mapping: | Mapping: {{mapping| 2 0 -35 -15 -47 | 0 2 25 13 34 }} | ||
POTE | Optimal tuning (POTE): ~99/70 = 1\2, ~49/40 = 351.505 | ||
{{Optimal ET sequence|legend=1| 58, 140, 198 }} | {{Optimal ET sequence|legend=1| 58, 140, 198 }} | ||
Line 95: | Line 95: | ||
Comma list: 352/351, 676/675, 847/845, 1716/1715 | Comma list: 352/351, 676/675, 847/845, 1716/1715 | ||
Mapping: | Mapping: {{mapping| 2 0 -35 -15 -47 -37 | 0 2 25 13 34 28 }} | ||
POTE | Optimal tuning (POTE): ~99/70 = 1\2, ~49/40 = 351.502 | ||
{{Optimal ET sequence|legend=1| 58, 140, 198, 536f }} | {{Optimal ET sequence|legend=1| 58, 140, 198, 536f }} | ||
Line 110: | Line 110: | ||
Comma list: 2401/2400, 3025/3024, 5120/5103 | Comma list: 2401/2400, 3025/3024, 5120/5103 | ||
Mapping: | Mapping: {{mapping| 1 1 -5 -1 8 | 0 4 50 26 -31 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~243/220 = 175.7378 | ||
{{Optimal ET sequence|legend=1| 41, 157, 198, 239, 676b, 915be }} | {{Optimal ET sequence|legend=1| 41, 157, 198, 239, 676b, 915be }} | ||
Line 123: | Line 123: | ||
Comma list: 352/351, 847/845, 2401/2400, 3025/3024 | Comma list: 352/351, 847/845, 2401/2400, 3025/3024 | ||
Mapping: | Mapping: {{mapping| 1 1 -5 -1 8 10 | 0 4 50 26 -31 -43 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~72/65 = 175.7470 | ||
{{Optimal ET sequence|legend=1| 41, 157, 198, 437f, 635bcff }} | {{Optimal ET sequence|legend=1| 41, 157, 198, 437f, 635bcff }} | ||
Line 134: | Line 134: | ||
{{Main| Tertiaseptal }} | {{Main| Tertiaseptal }} | ||
Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31&171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo | Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31 & 171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31-note mos gives plenty of room for those as well. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 65625/65536 | [[Comma list]]: 2401/2400, 65625/65536 | ||
{{Mapping|legend=1| 1 3 2 3 | 0 -22 5 -3 }} | |||
{{Multival|legend=1| 22 -5 3 -59 -57 21 }} | {{Multival|legend=1| 22 -5 3 -59 -57 21 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~256/245 = 77.191 | ||
{{Optimal ET sequence|legend=1| 31, 109, 140, 171 }} | {{Optimal ET sequence|legend=1| 31, 109, 140, 171 }} | ||
Line 155: | Line 155: | ||
Comma list: 243/242, 441/440, 65625/65536 | Comma list: 243/242, 441/440, 65625/65536 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 7 | 0 -22 5 -3 -55 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.227 | ||
{{Optimal ET sequence|legend=1| 31, 109e, 140e, 171, 202 }} | {{Optimal ET sequence|legend=1| 31, 109e, 140e, 171, 202 }} | ||
Line 168: | Line 168: | ||
Comma list: 243/242, 441/440, 625/624, 3584/3575 | Comma list: 243/242, 441/440, 625/624, 3584/3575 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 7 1 | 0 -22 5 -3 -55 42 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.203 | ||
{{Optimal ET sequence|legend=1| 31, 109e, 140e, 171 }} | {{Optimal ET sequence|legend=1| 31, 109e, 140e, 171 }} | ||
Line 181: | Line 181: | ||
Comma list: 243/242, 375/374, 441/440, 625/624, 3584/3575 | Comma list: 243/242, 375/374, 441/440, 625/624, 3584/3575 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 7 1 1 | 0 -22 5 -3 -55 42 48 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.201 | ||
{{Optimal ET sequence|legend=1| 31, 109eg, 140e, 171 }} | {{Optimal ET sequence|legend=1| 31, 109eg, 140e, 171 }} | ||
Line 194: | Line 194: | ||
Comma list: 385/384, 1331/1323, 1375/1372 | Comma list: 385/384, 1331/1323, 1375/1372 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 5 | 0 -22 5 -3 -24 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.173 | ||
{{Optimal ET sequence|legend=1| 31, 109, 140, 171e, 311e }} | {{Optimal ET sequence|legend=1| 31, 109, 140, 171e, 311e }} | ||
Line 207: | Line 207: | ||
Comma list: 352/351, 385/384, 625/624, 1331/1323 | Comma list: 352/351, 385/384, 625/624, 1331/1323 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 5 1 | 0 -22 5 -3 -24 42 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.158 | ||
{{Optimal ET sequence|legend=1| 31, 109, 140, 311e, 451ee }} | {{Optimal ET sequence|legend=1| 31, 109, 140, 311e, 451ee }} | ||
Line 220: | Line 220: | ||
Comma list: 352/351, 385/384, 561/560, 625/624, 715/714 | Comma list: 352/351, 385/384, 561/560, 625/624, 715/714 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 5 1 1 | 0 -22 5 -3 -24 42 48 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.162 | ||
{{Optimal ET sequence|legend=1| 31, 109g, 140, 311e, 451ee }} | {{Optimal ET sequence|legend=1| 31, 109g, 140, 311e, 451ee }} | ||
Line 233: | Line 233: | ||
Comma list: 2401/2400, 6250/6237, 65625/65536 | Comma list: 2401/2400, 6250/6237, 65625/65536 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 -4 | 0 -22 5 -3 116 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.169 | ||
{{Optimal ET sequence|legend=1| 140, 171, 311, 1695c, 2006bcd, 2317bcd, 2628bccde, 2939bccde, 3250bccde }} | {{Optimal ET sequence|legend=1| 140, 171, 311, 1695c, 2006bcd, 2317bcd, 2628bccde, 2939bccde, 3250bccde }} | ||
Line 246: | Line 246: | ||
Comma list: 625/624, 2080/2079, 2200/2197, 2401/2400 | Comma list: 625/624, 2080/2079, 2200/2197, 2401/2400 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 -4 1 | 0 -22 5 -3 116 42 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.168 | ||
{{Optimal ET sequence|legend=1| 140, 171, 311, 1073, 1384cf, 1695cf, 2006bcdf }} | {{Optimal ET sequence|legend=1| 140, 171, 311, 1073, 1384cf, 1695cf, 2006bcdf }} | ||
Line 259: | Line 259: | ||
Comma list: 595/594, 625/624, 833/832, 1156/1155, 2200/2197 | Comma list: 595/594, 625/624, 833/832, 1156/1155, 2200/2197 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 -4 1 1 | 0 -22 5 -3 116 42 48 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169 | ||
{{Optimal ET sequence|legend=1| 140, 171, 311 }} | {{Optimal ET sequence|legend=1| 140, 171, 311 }} | ||
Line 272: | Line 272: | ||
Comma list: 595/594, 625/624, 833/832, 1156/1155, 1216/1215, 2200/2197 | Comma list: 595/594, 625/624, 833/832, 1156/1155, 1216/1215, 2200/2197 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 -4 1 1 11 | 0 -22 5 -3 116 42 48 -105 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169 | ||
{{Optimal ET sequence|legend=1| 140, 171, 311, 1384cfgg, 1695cfgg, 2006bcdfgg }} | {{Optimal ET sequence|legend=1| 140, 171, 311, 1384cfgg, 1695cfgg, 2006bcdfgg }} | ||
Line 285: | Line 285: | ||
Comma list: 595/594, 625/624, 833/832, 875/874, 1105/1104, 1156/1155, 1216/1215 | Comma list: 595/594, 625/624, 833/832, 875/874, 1105/1104, 1156/1155, 1216/1215 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 | 0 -22 5 -3 116 42 48 -105 117 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.168 | ||
{{Optimal ET sequence|legend=1| 140, 311, 762g, 1073g, 1384cfgg }} | {{Optimal ET sequence|legend=1| 140, 311, 762g, 1073g, 1384cfgg }} | ||
Line 298: | Line 298: | ||
Comma list: 595/594, 625/624, 784/783, 833/832, 875/874, 1015/1014, 1105/1104, 1156/1155 | Comma list: 595/594, 625/624, 784/783, 833/832, 875/874, 1015/1014, 1105/1104, 1156/1155 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 | 0 -22 5 -3 116 42 48 -105 117 60 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.167 | ||
{{Optimal ET sequence|legend=1| 140, 311, 762g, 1073g, 1384cfggj }} | {{Optimal ET sequence|legend=1| 140, 311, 762g, 1073g, 1384cfggj }} | ||
Line 311: | Line 311: | ||
Comma list: 595/594, 625/624, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014 | Comma list: 595/594, 625/624, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 | 0 -22 5 -3 116 42 48 -105 117 60 -94 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.169 | ||
{{Optimal ET sequence|legend=1| 140, 171, 311 }} | {{Optimal ET sequence|legend=1| 140, 171, 311 }} | ||
Line 324: | Line 324: | ||
Comma list: 595/594, 625/624, 703/702, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014 | Comma list: 595/594, 625/624, 703/702, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 0 | 0 -22 5 -3 116 42 48 -105 117 60 -94 81 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.170 | ||
{{Optimal ET sequence|legend=1| 140, 171, 311 }} | {{Optimal ET sequence|legend=1| 140, 171, 311 }} | ||
Line 337: | Line 337: | ||
Comma list: 595/594, 625/624, 697/696, 703/702, 714/713, 784/783, 820/819, 833/832, 875/874, 900/899, 931/930 | Comma list: 595/594, 625/624, 697/696, 703/702, 714/713, 784/783, 820/819, 833/832, 875/874, 900/899, 931/930 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 0 6 | 0 -22 5 -3 116 42 48 -105 117 60 -94 81 -10 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.169 | ||
{{Optimal ET sequence|legend=1| 140, 171, 311 }} | {{Optimal ET sequence|legend=1| 140, 171, 311 }} | ||
Line 350: | Line 350: | ||
Comma list: 2401/2400, 3025/3024, 65625/65536 | Comma list: 2401/2400, 3025/3024, 65625/65536 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 6 | 0 -44 10 -6 -79 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.596 | ||
{{Optimal ET sequence|legend=1| 31, 280, 311, 342 }} | {{Optimal ET sequence|legend=1| 31, 280, 311, 342 }} | ||
Line 363: | Line 363: | ||
Comma list: 625/624, 1575/1573, 2401/2400, 4096/4095 | Comma list: 625/624, 1575/1573, 2401/2400, 4096/4095 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 6 1 | 0 -44 10 -6 -79 84 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.588 | ||
{{Optimal ET sequence|legend=1| 31, 280, 311, 964f, 1275f, 1586cff }} | {{Optimal ET sequence|legend=1| 31, 280, 311, 964f, 1275f, 1586cff }} | ||
Line 376: | Line 376: | ||
Comma list: 625/624, 833/832, 1225/1224, 1575/1573, 4096/4095 | Comma list: 625/624, 833/832, 1225/1224, 1575/1573, 4096/4095 | ||
Mapping: | Mapping: {{mapping| 1 3 2 3 6 1 1 | 0 -44 10 -6 -79 84 96 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.589 | ||
{{Optimal ET sequence|legend=1| 31, 280, 311, 653f, 964f }} | {{Optimal ET sequence|legend=1| 31, 280, 311, 653f, 964f }} | ||
Line 389: | Line 389: | ||
Comma list: 2401/2400, 9801/9800, 65625/65536 | Comma list: 2401/2400, 9801/9800, 65625/65536 | ||
Mapping: | Mapping: {{mapping| 2 6 4 6 1 | 0 -22 5 -3 46 }} | ||
POTE | Optimal tuning (POTE): ~99/70 = 1\2, ~256/245 = 77.193 | ||
{{Optimal ET sequence|legend=1| 62e, 140, 202, 342 }} | {{Optimal ET sequence|legend=1| 62e, 140, 202, 342 }} | ||
Line 398: | Line 398: | ||
== Quasiorwell == | == Quasiorwell == | ||
In addition to 2401/2400, quasiorwell tempers out 29360128/29296875 = {{monzo|22 -1 -10 1}}. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31&270 temperament, and as one might expect, 61\270 makes for an excellent tuning choice. Other possibilities are (7/2)<sup>1/8</sup>, giving just | In addition to 2401/2400, quasiorwell tempers out the quasiorwellisma, 29360128/29296875 = {{monzo| 22 -1 -10 1 }}. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31 & 270 temperament, and as one might expect, 61\270 makes for an excellent tuning choice. Other possibilities are (7/2)<sup>1/8</sup>, giving just 7's, or 384<sup>1/38</sup>, giving pure fifths. | ||
Adding 3025/3024 extends to the 11-limit and gives {{multival| 38 -3 8 64 …}} for the initial wedgie, and as expected, 270 remains an excellent tuning. | Adding 3025/3024 extends to the 11-limit and gives {{multival| 38 -3 8 64 …}} for the initial wedgie, and as expected, 270 remains an excellent tuning. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 29360128/29296875 | [[Comma list]]: 2401/2400, 29360128/29296875 | ||
{{Mapping|legend=1| 1 31 0 9 | 0 -38 3 -8 }} | |||
{{Multival|legend=1| 38 -3 8 -93 -94 27 }} | {{Multival|legend=1| 38 -3 8 -93 -94 27 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1024/875 = 271.107 | ||
{{Optimal ET sequence|legend=1| 31, 177, 208, 239, 270, 571, 841, 1111 }} | {{Optimal ET sequence|legend=1| 31, 177, 208, 239, 270, 571, 841, 1111 }} | ||
Line 421: | Line 421: | ||
Comma list: 2401/2400, 3025/3024, 5632/5625 | Comma list: 2401/2400, 3025/3024, 5632/5625 | ||
Mapping: | Mapping: {{mapping| 1 31 0 9 53 | 0 -38 3 -8 -64 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~90/77 = 271.111 | ||
{{Optimal ET sequence|legend=1| 31, 208, 239, 270 }} | {{Optimal ET sequence|legend=1| 31, 208, 239, 270 }} | ||
Line 434: | Line 434: | ||
Comma list: 1001/1000, 1716/1715, 3025/3024, 4096/4095 | Comma list: 1001/1000, 1716/1715, 3025/3024, 4096/4095 | ||
Mapping: | Mapping: {{mapping| 1 31 0 9 53 -59 | 0 -38 3 -8 -64 81 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~90/77 = 271.107 | ||
{{Optimal ET sequence|legend=1| 31, 239, 270, 571, 841, 1111 }} | {{Optimal ET sequence|legend=1| 31, 239, 270, 571, 841, 1111 }} | ||
Line 492: | Line 492: | ||
The generator for neominor temperament is tridecimal minor third [[13/11]], also known as ''Neo-gothic minor third''. | The generator for neominor temperament is tridecimal minor third [[13/11]], also known as ''Neo-gothic minor third''. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 177147/175616 | [[Comma list]]: 2401/2400, 177147/175616 | ||
{{Mapping|legend=1| 1 3 12 8 | 0 -6 -41 -22 }} | |||
{{Multival|legend=1|6 41 22 51 18 -64}} | {{Multival|legend=1| 6 41 22 51 18 -64 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~189/160 = 283.280 | ||
{{Optimal ET sequence|legend=1| 72, 161, 233, 305 }} | {{Optimal ET sequence|legend=1| 72, 161, 233, 305 }} | ||
Line 511: | Line 511: | ||
Comma list: 243/242, 441/440, 35937/35840 | Comma list: 243/242, 441/440, 35937/35840 | ||
Mapping: | Mapping: {{mapping| 1 3 12 8 7 | 0 -6 -41 -22 -15 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 283.276 | ||
{{Optimal ET sequence|legend=1| 72, 161, 233, 305 }} | {{Optimal ET sequence|legend=1| 72, 161, 233, 305 }} | ||
Line 524: | Line 524: | ||
Comma list: 169/168, 243/242, 364/363, 441/440 | Comma list: 169/168, 243/242, 364/363, 441/440 | ||
Mapping: | Mapping: {{mapping| 1 3 12 8 7 7 | 0 -6 -41 -22 -15 -14 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 283.294 | ||
{{Optimal ET sequence|legend=1| 72, 161f, 233f }} | {{Optimal ET sequence|legend=1| 72, 161f, 233f }} | ||
Line 535: | Line 535: | ||
The generator for emmthird temperament is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935. | The generator for emmthird temperament is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 14348907/14336000 | [[Comma list]]: 2401/2400, 14348907/14336000 | ||
{{Mapping|legend=1| 1 -3 -17 -8 | 0 14 59 33 }} | |||
{{Multival|legend=1|14 59 33 61 13 -89}} | {{Multival|legend=1|14 59 33 61 13 -89}} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2744/2187 = 392.988 | ||
{{Optimal ET sequence|legend=1| 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d }} | {{Optimal ET sequence|legend=1| 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d }} | ||
Line 554: | Line 554: | ||
Comma list: 243/242, 441/440, 1792000/1771561 | Comma list: 243/242, 441/440, 1792000/1771561 | ||
Mapping: | Mapping: {{mapping| 1 -3 -17 -8 -8 | 0 14 59 33 35 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~1372/1089 = 392.991 | ||
{{Optimal ET sequence|legend=1| 58, 113, 171 }} | {{Optimal ET sequence|legend=1| 58, 113, 171 }} | ||
Line 567: | Line 567: | ||
Comma list: 243/242, 364/363, 441/440, 2200/2197 | Comma list: 243/242, 364/363, 441/440, 2200/2197 | ||
Mapping: | Mapping: {{mapping| 1 -3 -17 -8 -8 -13 | 0 14 59 33 35 51 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~180/143 = 392.989 | ||
{{Optimal ET sequence|legend=1| 58, 113, 171 }} | {{Optimal ET sequence|legend=1| 58, 113, 171 }} | ||
Line 580: | Line 580: | ||
Comma list: 243/242, 364/363, 441/440, 595/594, 2200/2197 | Comma list: 243/242, 364/363, 441/440, 595/594, 2200/2197 | ||
Mapping: | Mapping: {{mapping| 1 -3 -17 -8 -8 -13 9 | 0 14 59 33 35 51 -15 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~64/51 = 392.985 | ||
{{Optimal ET sequence|legend=1| 58, 113, 171 }} | {{Optimal ET sequence|legend=1| 58, 113, 171 }} | ||
Line 589: | Line 589: | ||
== Quinmite == | == Quinmite == | ||
The generator for quinmite is quasi-tempered minor third 25/21, flatter than 6/5 by the starling comma, 126/125. It is also generated by 1/5 of minor tenth 12/5, and its name is a play on the words "quintans" (Latin for "one fifth") and "minor tenth", given by [[Petr Pařízek]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref><ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_104268.html Yahoo! Tuning Group | ''2D temperament names, part I -- reclassified temperaments from message #101780'']</ref>. | The generator for quinmite is quasi-tempered minor third [[25/21]], flatter than 6/5 by the starling comma, [[126/125]]. It is also generated by 1/5 of minor tenth 12/5, and its name is a play on the words "quintans" (Latin for "one fifth") and "minor tenth", given by [[Petr Pařízek]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref><ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_104268.html Yahoo! Tuning Group | ''2D temperament names, part I -- reclassified temperaments from message #101780'']</ref>. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 1959552/1953125 | [[Comma list]]: 2401/2400, 1959552/1953125 | ||
{{Mapping|legend=1| 1 -7 -5 -3 | 0 34 29 23 }} | |||
{{Multival|legend=1|34 29 23 -33 -59 -28}} | {{Multival|legend=1| 34 29 23 -33 -59 -28 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 302.997 | ||
{{Optimal ET sequence|legend=1| 95, 99, 202, 301, 400, 701, 1101c, 1802c, 2903cc }} | {{Optimal ET sequence|legend=1| 95, 99, 202, 301, 400, 701, 1101c, 1802c, 2903cc }} | ||
Line 608: | Line 608: | ||
The generator for unthirds temperament is undecimal major third, 14/11. | The generator for unthirds temperament is undecimal major third, 14/11. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 68359375/68024448 | [[Comma list]]: 2401/2400, 68359375/68024448 | ||
{{Mapping|legend=1| 1 -13 -14 -9 | 0 42 47 34 }} | |||
{{Multival|legend=1|42 47 34 -23 -64 -53}} | {{Multival|legend=1| 42 47 34 -23 -64 -53 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3969/3125 = 416.717 | ||
{{Optimal ET sequence|legend=1| 72, 167, 239, 311, 694, 1005c }} | {{Optimal ET sequence|legend=1| 72, 167, 239, 311, 694, 1005c }} | ||
Line 627: | Line 627: | ||
Comma list: 2401/2400, 3025/3024, 4000/3993 | Comma list: 2401/2400, 3025/3024, 4000/3993 | ||
Mapping: | Mapping: {{mapping| 1 -13 -14 -9 -8 | 0 42 47 34 33 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.718 | ||
{{Optimal ET sequence|legend=1| 72, 167, 239, 311, 1316c }} | {{Optimal ET sequence|legend=1| 72, 167, 239, 311, 1316c }} | ||
Line 640: | Line 640: | ||
Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400 | Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400 | ||
Mapping: | Mapping: {{mapping| 1 -13 -14 -9 -9 -47 | 0 42 47 34 33 146 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.716 | ||
{{Optimal ET sequence|legend=1| 72, 311, 694, 1005c, 1699cd }} | {{Optimal ET sequence|legend=1| 72, 311, 694, 1005c, 1699cd }} | ||
Line 651: | Line 651: | ||
This temperament has a generator of neutral third (0.2 cents flat of [[49/40]]) and tempers out the [[garischisma]]. | This temperament has a generator of neutral third (0.2 cents flat of [[49/40]]) and tempers out the [[garischisma]]. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 33554432/33480783 | [[Comma list]]: 2401/2400, 33554432/33480783 | ||
{{Mapping|legend=1| 1 1 19 11 | 0 2 -57 -28 }} | |||
{{Multival|legend=1|2 -57 -28 -95 -50 95}} | {{Multival|legend=1| 2 -57 -28 -95 -50 95 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 351.113 | ||
{{Optimal ET sequence|legend=1| 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bbcc }} | {{Optimal ET sequence|legend=1| 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bbcc }} | ||
Line 670: | Line 670: | ||
Comma list: 2401/2400, 3025/3024, 19712/19683 | Comma list: 2401/2400, 3025/3024, 19712/19683 | ||
Mapping: | Mapping: {{mapping| 1 1 19 11 -10 | 0 2 -57 -28 46 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.115 | ||
{{Optimal ET sequence|legend=1| 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b }} | {{Optimal ET sequence|legend=1| 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b }} | ||
Line 683: | Line 683: | ||
Comma list: 2080/2079, 2401/2400, 3025/3024, 4096/4095 | Comma list: 2080/2079, 2401/2400, 3025/3024, 4096/4095 | ||
Mapping: | Mapping: {{mapping| 1 1 19 11 -10 -20 | 0 2 -57 -28 46 81 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.117 | ||
{{Optimal ET sequence|legend=1| 41, 229, 270, 581, 851, 2283b, 3134b }} | {{Optimal ET sequence|legend=1| 41, 229, 270, 581, 851, 2283b, 3134b }} | ||
Line 696: | Line 696: | ||
Aside from 2401/2400, [[septidiasemi]] tempers out 2152828125/2147483648 in the 7-limit. It is so named because the generator is a "septimal diatonic semitone" (0.15 cents flat of [[15/14]]). It is an excellent tuning for 2.3.5.7.13 and 2.3.5.7.13.17 subgroups rather than full 13- and 17-limit. | Aside from 2401/2400, [[septidiasemi]] tempers out 2152828125/2147483648 in the 7-limit. It is so named because the generator is a "septimal diatonic semitone" (0.15 cents flat of [[15/14]]). It is an excellent tuning for 2.3.5.7.13 and 2.3.5.7.13.17 subgroups rather than full 13- and 17-limit. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 2152828125/2147483648 | [[Comma list]]: 2401/2400, 2152828125/2147483648 | ||
{{Mapping|legend=1| 1 -1 6 4 | 0 26 -37 -12 }} | |||
{{Multival|legend=1|26 -37 -12 -119 -92 76}} | {{Multival|legend=1| 26 -37 -12 -119 -92 76 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~15/14 = 119.297 | ||
{{Optimal ET sequence|legend=1| 10, 151, 161, 171, 3581bcdd, 3752bcdd, 3923bcdd, 4094bcdd, 4265bccdd, 4436bccdd, 4607bccdd }} | {{Optimal ET sequence|legend=1| 10, 151, 161, 171, 3581bcdd, 3752bcdd, 3923bcdd, 4094bcdd, 4265bccdd, 4436bccdd, 4607bccdd }} | ||
Line 717: | Line 717: | ||
Comma list: 243/242, 441/440, 939524096/935859375 | Comma list: 243/242, 441/440, 939524096/935859375 | ||
Mapping: | Mapping: {{mapping| 1 -1 6 4 -3 | 0 26 -37 -12 65 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.279 | ||
{{Optimal ET sequence|legend=1| 10, 151, 161, 171, 332 }} | {{Optimal ET sequence|legend=1| 10, 151, 161, 171, 332 }} | ||
Line 730: | Line 730: | ||
Comma list: 243/242, 441/440, 2200/2197, 3584/3575 | Comma list: 243/242, 441/440, 2200/2197, 3584/3575 | ||
Mapping: | Mapping: {{mapping| 1 -1 6 4 -3 4 | 0 26 -37 -12 65 -3 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281 | ||
{{Optimal ET sequence|legend=1| 10, 151, 161, 171, 332, 835eeff }} | {{Optimal ET sequence|legend=1| 10, 151, 161, 171, 332, 835eeff }} | ||
Line 743: | Line 743: | ||
Comma list: 243/242, 441/440, 833/832, 2200/2197, 3584/3575 | Comma list: 243/242, 441/440, 833/832, 2200/2197, 3584/3575 | ||
Mapping: | Mapping: {{mapping| 1 -1 6 4 -3 4 2 | 0 26 -37 -12 65 -3 21 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281 | ||
{{Optimal ET sequence|legend=1| 10, 151, 161, 171, 332, 503ef, 835eeff }} | {{Optimal ET sequence|legend=1| 10, 151, 161, 171, 332, 503ef, 835eeff }} | ||
Line 752: | Line 752: | ||
== Maviloid == | == Maviloid == | ||
{{ | {{See also| Ragismic microtemperaments #Parakleismic }} | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 1224440064/1220703125 | [[Comma list]]: 2401/2400, 1224440064/1220703125 | ||
{{Mapping|legend=1| 1 31 34 26 | 0 -52 -56 -41 }} | |||
{{Multival|legend=1|52 56 41 -32 -81 -62}} | {{Multival|legend=1| 52 56 41 -32 -81 -62 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1296/875 = 678.810 | ||
{{Optimal ET sequence|legend=1| 76, 99, 274, 373, 472, 571, 1043, 1614 }} | {{Optimal ET sequence|legend=1| 76, 99, 274, 373, 472, 571, 1043, 1614 }} | ||
Line 771: | Line 771: | ||
{{See also| Luna family }} | {{See also| Luna family }} | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 274877906944/274658203125 | [[Comma list]]: 2401/2400, 274877906944/274658203125 | ||
{{Mapping|legend=1| 1 19 0 6 | 0 -60 8 -11 }} | |||
{{Multival|legend=1|60 -8 11 -152 -151 48}} | {{Multival|legend=1| 60 -8 11 -152 -151 48 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~57344/46875 = 348.301 | ||
{{Optimal ET sequence|legend=1| 31, 348, 379, 410, 441, 1354, 1795, 2236 }} | {{Optimal ET sequence|legend=1| 31, 348, 379, 410, 441, 1354, 1795, 2236 }} | ||
Line 788: | Line 788: | ||
{{See also| Metric microtemperaments #Geb }} | {{See also| Metric microtemperaments #Geb }} | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 31381059609/31360000000 | [[Comma list]]: 2401/2400, 31381059609/31360000000 | ||
{{Mapping|legend=1| 1 13 33 21 | 0 -32 -86 -51 }} | |||
{{Multival|legend=1|32 86 51 62 -9 -123}} | {{Multival|legend=1| 32 86 51 62 -9 -123 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2800/2187 = 428.066 | ||
{{Optimal ET sequence|legend=1| 157, 171, 1012, 1183, 1354, 1525, 1696, 6955dd }} | {{Optimal ET sequence|legend=1| 157, 171, 1012, 1183, 1354, 1525, 1696, 6955dd }} | ||
Line 803: | Line 803: | ||
== Gorgik == | == Gorgik == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 28672/28125 | [[Comma list]]: 2401/2400, 28672/28125 | ||
{{Mapping|legend=1| 1 5 1 3 | 0 -18 7 -1 }} | |||
{{Multival|legend=1|18 -7 1 -53 -49 22}} | {{Multival|legend=1| 18 -7 1 -53 -49 22 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 227.512 | ||
{{Optimal ET sequence|legend=1| 21, 37, 58, 153bc, 211bccd, 269bccd }} | {{Optimal ET sequence|legend=1| 21, 37, 58, 153bc, 211bccd, 269bccd }} | ||
Line 822: | Line 822: | ||
Comma list: 176/175, 2401/2400, 2560/2541 | Comma list: 176/175, 2401/2400, 2560/2541 | ||
Mapping: | Mapping: {{mapping| 1 5 1 3 1 | 0 -18 7 -1 13 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 227.500 | ||
{{Optimal ET sequence|legend=1| 21, 37, 58, 153bce, 211bccdee, 269bccdee }} | {{Optimal ET sequence|legend=1| 21, 37, 58, 153bce, 211bccdee, 269bccdee }} | ||
Line 835: | Line 835: | ||
Comma list: 176/175, 196/195, 364/363, 512/507 | Comma list: 176/175, 196/195, 364/363, 512/507 | ||
Mapping: | Mapping: {{mapping| 1 5 1 3 1 2 | 0 -18 7 -1 13 9 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 227.493 | ||
{{Optimal ET sequence|legend=1| 21, 37, 58, 153bcef, 211bccdeeff }} | {{Optimal ET sequence|legend=1| 21, 37, 58, 153bcef, 211bccdeeff }} | ||
Line 844: | Line 844: | ||
== Fibo == | == Fibo == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 341796875/339738624 | [[Comma list]]: 2401/2400, 341796875/339738624 | ||
{{Mapping|legend=1| 1 19 8 10 | 0 -46 -15 -19 }} | |||
{{Multival|legend=1|46 15 19 -83 -99 2}} | {{Multival|legend=1| 46 15 19 -83 -99 2 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/96 = 454.310 | ||
{{Optimal ET sequence|legend=1| 37, 103, 140, 243, 383, 1009cd, 1392ccd }} | {{Optimal ET sequence|legend=1| 37, 103, 140, 243, 383, 1009cd, 1392ccd }} | ||
Line 863: | Line 863: | ||
Comma list: 385/384, 1375/1372, 43923/43750 | Comma list: 385/384, 1375/1372, 43923/43750 | ||
Mapping: | Mapping: {{mapping| 1 19 8 10 8 | 0 -46 -15 -19 -12 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~100/77 = 454.318 | ||
{{Optimal ET sequence|legend=1| 37, 103, 140, 243e }} | {{Optimal ET sequence|legend=1| 37, 103, 140, 243e }} | ||
Line 876: | Line 876: | ||
Comma list: 385/384, 625/624, 847/845, 1375/1372 | Comma list: 385/384, 625/624, 847/845, 1375/1372 | ||
Mapping: | Mapping: {{mapping| 1 19 8 10 8 9 | 0 -46 -15 -19 -12 -14 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 454.316 | ||
{{Optimal ET sequence|legend=1| 37, 103, 140, 243e }} | {{Optimal ET sequence|legend=1| 37, 103, 140, 243e }} | ||
Line 885: | Line 885: | ||
== Mintone == | == Mintone == | ||
In addition to 2401/2400, mintone tempers out 177147/175000 = {{monzo|-3 11 -5 -1}} in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58&103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice. | In addition to 2401/2400, mintone tempers out 177147/175000 = {{monzo|-3 11 -5 -1}} in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58 & 103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 177147/175000 | [[Comma list]]: 2401/2400, 177147/175000 | ||
{{Mapping|legend=1| 1 5 9 7 | 0 -22 -43 -27 }} | |||
{{Multival|legend=1|22 43 27 17 -19 -58}} | {{Multival|legend=1| 22 43 27 17 -19 -58 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~10/9 = 186.343 | ||
{{Optimal ET sequence|legend=1| 45, 58, 103, 161, 586b, 747bc, 908bbc }} | {{Optimal ET sequence|legend=1| 45, 58, 103, 161, 586b, 747bc, 908bbc }} | ||
Line 906: | Line 906: | ||
Comma list: 243/242, 441/440, 43923/43750 | Comma list: 243/242, 441/440, 43923/43750 | ||
Mapping: | Mapping: {{mapping| 1 5 9 7 12 | 0 -22 -43 -27 -55 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.345 | ||
{{Optimal ET sequence|legend=1| 58, 103, 161, 425b, 586b, 747bc }} | {{Optimal ET sequence|legend=1| 58, 103, 161, 425b, 586b, 747bc }} | ||
Line 919: | Line 919: | ||
Comma list: 243/242, 351/350, 441/440, 847/845 | Comma list: 243/242, 351/350, 441/440, 847/845 | ||
Mapping: | Mapping: {{mapping| 1 5 9 7 12 11 | 0 -22 -43 -27 -55 -47 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.347 | ||
{{Optimal ET sequence|legend=1| 58, 103, 161, 425b, 586bf }} | {{Optimal ET sequence|legend=1| 58, 103, 161, 425b, 586bf }} | ||
Line 932: | Line 932: | ||
Comma list: 243/242, 351/350, 441/440, 561/560, 847/845 | Comma list: 243/242, 351/350, 441/440, 561/560, 847/845 | ||
Mapping: | Mapping: {{mapping| 1 5 9 7 12 11 3 | 0 -22 -43 -27 -55 -47 7 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.348 | ||
{{Optimal ET sequence|legend=1| 58, 103, 161, 425b, 586bf }} | {{Optimal ET sequence|legend=1| 58, 103, 161, 425b, 586bf }} | ||
Line 941: | Line 941: | ||
== Catafourth == | == Catafourth == | ||
{{ | {{See also| Sensipent family }} | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 78732/78125 | [[Comma list]]: 2401/2400, 78732/78125 | ||
{{Mapping|legend=1| 1 13 17 13 | 0 -28 -36 -25 }} | |||
{{Multival|legend=1| 28 36 25 -8 -39 -43 }} | {{Multival|legend=1| 28 36 25 -8 -39 -43 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~250/189 = 489.235 | ||
{{Optimal ET sequence|legend=1| 27, 76, 103, 130 }} | {{Optimal ET sequence|legend=1| 27, 76, 103, 130 }} | ||
Line 962: | Line 962: | ||
Comma list: 243/242, 441/440, 78408/78125 | Comma list: 243/242, 441/440, 78408/78125 | ||
Mapping: | Mapping: {{mapping| 1 13 17 13 32 | 0 -28 -36 -25 -70 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~250/189 = 489.252 | ||
{{Optimal ET sequence|legend=1| 103, 130, 233, 363, 493e, 856be }} | {{Optimal ET sequence|legend=1| 103, 130, 233, 363, 493e, 856be }} | ||
Line 975: | Line 975: | ||
Comma list: 243/242, 351/350, 441/440, 10985/10976 | Comma list: 243/242, 351/350, 441/440, 10985/10976 | ||
Mapping: | Mapping: {{mapping| 1 13 17 13 32 9 | 0 -28 -36 -25 -70 -13 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~65/49 = 489.256 | ||
{{Optimal ET sequence|legend=1| 103, 130, 233, 363 }} | {{Optimal ET sequence|legend=1| 103, 130, 233, 363 }} | ||
Line 984: | Line 984: | ||
== Cotritone == | == Cotritone == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 390625/387072 | [[Comma list]]: 2401/2400, 390625/387072 | ||
{{Mapping|legend=1| 1 -13 -4 -4 | 0 30 13 14 }} | |||
{{Multival|legend=1|30 13 14 -49 -62 -4}} | {{Multival|legend=1| 30 13 14 -49 -62 -4 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/5 = 583.385 | ||
{{Optimal ET sequence|legend=1| 35, 37, 72, 109, 181, 253 }} | {{Optimal ET sequence|legend=1| 35, 37, 72, 109, 181, 253 }} | ||
Line 1,003: | Line 1,003: | ||
Comma list: 385/384, 1375/1372, 4000/3993 | Comma list: 385/384, 1375/1372, 4000/3993 | ||
Mapping: | Mapping: {{mapping| 1 -13 -4 -4 2 | 0 30 13 14 3 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387 | ||
{{Optimal ET sequence|legend=1| 35, 37, 72, 109, 181, 253 }} | {{Optimal ET sequence|legend=1| 35, 37, 72, 109, 181, 253 }} | ||
Line 1,016: | Line 1,016: | ||
Comma list: 169/168, 364/363, 385/384, 625/624 | Comma list: 169/168, 364/363, 385/384, 625/624 | ||
Mapping: | Mapping: {{mapping| 1 -13 -4 -4 2 -7 | 0 30 13 14 3 22 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387 | ||
{{Optimal ET sequence|legend=1| 37, 72, 109, 181f }} | {{Optimal ET sequence|legend=1| 37, 72, 109, 181f }} | ||
Line 1,027: | Line 1,027: | ||
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Quasimoha]].'' | : ''For the 5-limit version of this temperament, see [[High badness temperaments #Quasimoha]].'' | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 3645/3584 | [[Comma list]]: 2401/2400, 3645/3584 | ||
{{Mapping|legend=1| 1 1 9 6 | 0 2 -23 -11 }} | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 348.603 | ||
{{Optimal ET sequence|legend=1| 31, 117c, 148bc, 179bc }} | {{Optimal ET sequence|legend=1| 31, 117c, 148bc, 179bc }} | ||
Line 1,044: | Line 1,044: | ||
Comma list: 243/242, 441/440, 1815/1792 | Comma list: 243/242, 441/440, 1815/1792 | ||
Mapping: | Mapping: {{mapping| 1 1 9 6 2 | 0 2 -23 -11 5 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.639 | ||
{{Optimal ET sequence|legend=1| 31, 86ce, 117ce, 148bce }} | {{Optimal ET sequence|legend=1| 31, 86ce, 117ce, 148bce }} | ||
Line 1,059: | Line 1,059: | ||
[[Comma list]]: 2401/2400, {{monzo| 93 -32 -17 -1 }} | [[Comma list]]: 2401/2400, {{monzo| 93 -32 -17 -1 }} | ||
{{Mapping|legend=1| 1 43 -74 -25 | 0 -70 129 47 }} | |||
: mapping generators: ~2, ~675/448 | |||
[[Optimal tuning]] ([[CTE]]): ~675/448 = 709.9719 | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~675/448 = 709.9719 | ||
{{Optimal ET sequence|legend=1| 120, 191, 311, 742, 1053, 2848, 3901 }} | {{Optimal ET sequence|legend=1| 120, 191, 311, 742, 1053, 2848, 3901 }} | ||
Line 1,074: | Line 1,074: | ||
Comma list: 2401/2400, 820125/819896, 2097152/2096325 | Comma list: 2401/2400, 820125/819896, 2097152/2096325 | ||
Mapping: {{ | Mapping: {{mapping| 1 43 -74 -25 36 | 0 -70 129 47 -55 }} | ||
Optimal tuning (CTE): ~675/448 = 709.9720 | Optimal tuning (CTE): ~2 = 1\1, ~675/448 = 709.9720 | ||
{{Optimal ET sequence|legend=1| 120, 191, 311, 742, 1053, 1795 }} | {{Optimal ET sequence|legend=1| 120, 191, 311, 742, 1053, 1795 }} | ||
Line 1,087: | Line 1,087: | ||
Comma list: 2401/2400, 4096/4095, 6656/6655, 24192/24167 | Comma list: 2401/2400, 4096/4095, 6656/6655, 24192/24167 | ||
Mapping: {{ | Mapping: {{mapping| 1 43 -74 -25 36 25 | 0 -70 129 47 -55 -36 }} | ||
Optimal tuning (CTE): ~98/65 = 709.9723 | Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9723 | ||
{{Optimal ET sequence|legend=1| 120, 191, 311, 742, 1053, 1795f }} | {{Optimal ET sequence|legend=1| 120, 191, 311, 742, 1053, 1795f }} | ||
Line 1,100: | Line 1,100: | ||
Comma list: 2401/2400, 2601/2600, 4096/4095, 6656/6655, 8624/8619 | Comma list: 2401/2400, 2601/2600, 4096/4095, 6656/6655, 8624/8619 | ||
Mapping: {{ | Mapping: {{mapping| 1 43 -74 -25 36 25 -103 | 0 -70 129 47 -55 -36 181 }} | ||
Optimal tuning (CTE): ~98/65 = 709.9722 | Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9722 | ||
{{Optimal ET sequence|legend=1| 120g, 191g, 311, 431, 742, 1795f }} | {{Optimal ET sequence|legend=1| 120g, 191g, 311, 431, 742, 1795f }} | ||
Line 1,113: | Line 1,113: | ||
Comma list: 2401/2400, 2601/2600, 2926/2925, 3136/3135, 3213/3211, 5985/5984 | Comma list: 2401/2400, 2601/2600, 2926/2925, 3136/3135, 3213/3211, 5985/5984 | ||
Mapping: {{ | Mapping: {{mapping| 1 43 -74 -25 36 25 -103 -49 | 0 -70 129 47 -55 -36 181 90 }} | ||
Optimal tuning (CTE): ~98/65 = 709.9722 | Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9722 | ||
{{Optimal ET sequence|legend=1| 120g, 191g, 311, 431, 742, 1795f }} | {{Optimal ET sequence|legend=1| 120g, 191g, 311, 431, 742, 1795f }} | ||
Line 1,123: | Line 1,123: | ||
[[Category:Temperament collections]] | [[Category:Temperament collections]] | ||
[[Category:Breedsmic temperaments| ]] <!-- main article --> | [[Category:Breedsmic temperaments| ]] <!-- main article --> | ||
[[Category:Breed| ]] <!-- key article --> | |||
[[Category:Rank 2]] | [[Category:Rank 2]] |