436edo: Difference between revisions

Cleanup
Rework; cleanup; clarify the title row of the rank-2 temp table
Line 3: Line 3:


== Theory ==
== Theory ==
436edo is [[consistent]] to the [[23-odd-limit]]. The [[patent val]] of 436edo has a distinct flat tendency, in the sense that if the [[octave]] is pure, harmonics from 3 to 37 are all flat. It tempers out [[32805/32768]] and {{monzo| 1 -68 46 }} in the 5-limit; [[390625/388962]], 420175/419904, and [[2100875/2097152]] in the 7-limit; 1375/1372, [[6250/6237]], [[41503/41472]], and 322102/321489 in the 11-limit; [[625/624]], [[1716/1715]], [[2080/2079]], [[10648/10647]], and 15379/15360 in the 13-limit; [[715/714]], [[1089/1088]], [[1225/1224]], 1275/1274, [[2025/2023]], and 11271/11264 in the 17-limit; 1331/1330, [[1445/1444]], [[1521/1520]], 1540/1539, [[1729/1728]], 4394/4389, and 4875/4864 in the 19-limit; 875/874, 897/896, 1105/1104, 1863/1862, 2024/2023, 2185/2184, 2300/2299, and 2530/2527 in the 23-limit.
436edo is [[consistent]] to the [[23-odd-limit]]. The [[patent val]] of 436edo has a distinct flat tendency, in the sense that if the [[octave]] is pure, [[harmonic]]s from 3 to 37 are all flat.  


436edo is accurate for some intervals including [[3/2]], [[7/4]], [[11/10]], [[13/10]], [[18/17]], and [[19/18]], so it is especially suitable for the 2.3.7.11/5.13/5.17.19 [[subgroup]].
The equal temperament [[tempering out|tempers out]] [[32805/32768]] and {{monzo| 1 -68 46 }} in the 5-limit; [[390625/388962]], 420175/419904, and [[2100875/2097152]] in the 7-limit; 1375/1372, [[6250/6237]], [[41503/41472]], and 322102/321489 in the 11-limit; [[625/624]], [[1716/1715]], [[2080/2079]], [[10648/10647]], and 15379/15360 in the 13-limit; [[715/714]], [[1089/1088]], [[1225/1224]], [[1275/1274]], [[2025/2023]], and 11271/11264 in the 17-limit; 1331/1330, [[1445/1444]], [[1521/1520]], 1540/1539, [[1729/1728]], 4394/4389, and 4875/4864 in the 19-limit; 875/874, 897/896, 1105/1104, 1863/1862, 2024/2023, 2185/2184, 2300/2299, and 2530/2527 in the 23-limit. It [[support]]s and gives a good tuning to [[quadrant]]. It also supports [[tsaharuk]], but [[171edo]] is better suited for that purpose.
 
436edo is accurate for some intervals including [[3/2]], [[7/4]], [[11/10]], [[13/10]], [[18/17]], and [[19/18]], so it is especially suitable for the 2.3.7.11/5.13/5.17.19 [[subgroup]].  


=== Prime harmonics ===
=== Prime harmonics ===
Line 11: Line 13:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 436 factors into 2<sup>2</sup> × 109, 436edo has subset edos {{EDOs| 2, 4, 109, and 218 }}.
Since 436 factors into {{factorization|436}}, 436edo has subset edos {{EDOs| 2, 4, 109, and 218 }}.


[[1308edo]], which divides the edostep into three, is a [[zeta gap edo]] and is consistent in the 21-odd-limit.
[[1308edo]], which divides its edostep into three, is a [[zeta gap edo]] and is consistent in the 21-odd-limit.


== Regular temperament properties ==
== Regular temperament properties ==
Line 28: Line 30:
| 2.3
| 2.3
| {{monzo| -691 436 }}
| {{monzo| -691 436 }}
| [{{val| 436 691 }}]
| {{mapping| 436 691 }}
| +0.0379
| +0.0379
| 0.0379
| 0.0379
Line 35: Line 37:
| 2.3.5
| 2.3.5
| 32805/32768, {{monzo| 1 -68 46 }}
| 32805/32768, {{monzo| 1 -68 46 }}
| [{{val| 436 691 1012 }}]
| {{mapping| 436 691 1012 }}
| +0.1678
| +0.1678
| 0.1863
| 0.1863
Line 42: Line 44:
| 2.3.5.7
| 2.3.5.7
| 32805/32768, 390625/388962, 420175/419904
| 32805/32768, 390625/388962, 420175/419904
| [{{val| 436 691 1012 1224 }}]
| {{mapping| 436 691 1012 1224 }}
| +0.1275
| +0.1275
| 0.1758
| 0.1758
Line 49: Line 51:
| 2.3.5.7.11
| 2.3.5.7.11
| 1375/1372, 6250/6237, 32805/32768, 41503/41472
| 1375/1372, 6250/6237, 32805/32768, 41503/41472
| [{{val| 436 691 1012 1224 1508 }}]
| {{mapping| 436 691 1012 1224 1508 }}
| +0.1517
| +0.1517
| 0.1645
| 0.1645
Line 56: Line 58:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 625/624, 1375/1372, 2080/2079, 10648/10647, 15379/15360
| 625/624, 1375/1372, 2080/2079, 10648/10647, 15379/15360
| [{{val| 436 691 1012 1224 1508 1613 }}]
| {{mapping| 436 691 1012 1224 1508 1613 }}
| +0.1749
| +0.1749
| 0.1589
| 0.1589
Line 63: Line 65:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 625/624, 715/714, 1089/1088, 1225/1224, 2431/2430, 10648/10647
| 625/624, 715/714, 1089/1088, 1225/1224, 2431/2430, 10648/10647
| [{{val| 436 691 1012 1224 1508 1613 1782 }}]
| {{mapping| 436 691 1012 1224 1508 1613 1782 }}
| +0.1628
| +0.1628
| 0.1501
| 0.1501
Line 70: Line 72:
| 2.3.5.7.11.13.17.19
| 2.3.5.7.11.13.17.19
| 625/624, 715/714, 1089/1088, 1225/1224, 1331/1330, 1445/1444, 1729/1728
| 625/624, 715/714, 1089/1088, 1225/1224, 1331/1330, 1445/1444, 1729/1728
| [{{val| 436 691 1012 1224 1508 1613 1782 1852 }}]
| {{mapping| 436 691 1012 1224 1508 1613 1782 1852 }}
| +0.1503
| +0.1503
| 0.1443
| 0.1443
Line 80: Line 82:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator*
! Cents<br>(Reduced)
! Cents*
! Associated<br>Ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
Line 103: Line 105:
| [[Quadrant]]
| [[Quadrant]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct