Würschmidt family: Difference between revisions

Update keys and merge sections
-hemiwuerschmidt (addressed in hemimean clan as a strong extension). Explain the implications of mos structures of this temp
Line 3: Line 3:
10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the [[minimax tuning]].  
10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the [[minimax tuning]].  


[[MOS scale]]s of würschmidt are even more extreme than those of [[magic]]. [[Proper]] scales does not appear until 28, 31 or even 34 notes.
[[Mos scale]]s may not be the best approach for würschmidt since they are even more extreme than those of [[magic]]. [[Proper]] scales does not appear until 28, 31 or even 34 notes, depending on the specific tuning.  


The second comma of the [[Normal lists #Normal interval list|normal comma list]] defines which 7-limit family member we are looking at. Würschmidt adds {{monzo| 12 3 -6 -1 }}, worschmidt adds 65625/65536 = {{monzo| -16 1 5 1 }}, whirrschmidt adds 4375/4374 = {{monzo| -1 -7 4 1 }} and hemiwürschmidt adds 6144/6125 = {{monzo| 11 1 -3 -2 }}.
The second comma of the [[Normal lists #Normal interval list|normal comma list]] defines which 7-limit family member we are looking at. Septimal würschmidt adds {{monzo| 12 3 -6 -1 }}, worschmidt adds 65625/65536 = {{monzo| -16 1 5 1 }}, whirrschmidt adds 4375/4374 = {{monzo| -1 -7 4 1 }}. These all use the same generator as 5-limit würschmidt.
 
Hemiwürschmidt adds 6144/6125 = {{monzo| 11 1 -3 -2 }} and splits the generator in two. This temperament is the best extension available for würschmidt despite its complexity. The details can be found in [[Hemimean clan #Hemiwürschmidt|Hemimean clan]].  


== Würschmidt ==
== Würschmidt ==
Line 16: Line 18:
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 387.799
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 387.799


{{Optimal ET sequence|legend=1|3, 28, 31, 34, 65, 99, 164, 721c, 885c }}
{{Optimal ET sequence|legend=1| 3, 28, 31, 34, 65, 99, 164, 721c, 885c }}


[[Badness]]: 0.040603
[[Badness]]: 0.040603
Line 142: Line 144:


Badness: 0.058325
Badness: 0.058325
== Hemiwürschmidt ==
{{See also| Hemimean clan #Hemiwürschmidt }}
'''Hemiwürschmidt''' (sometimes spelled '''hemiwuerschmidt'''), which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out [[2401/2400]], [[3136/3125]], and [[6144/6125]]. [[68edo]], [[99edo]] and [[130edo]] can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwürschmidt extends to a higher limit temperament, {{multival| 16 2 5 40 -39 -49 -48 28 … }}.
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 2401/2400, 3136/3125
{{Mapping|legend=1| 1 15 4 7 | 0 -16 -2 -5 }}
{{Multival|legend=1| 16 2 5 -34 -37 6 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~28/25 = 193.898
{{Optimal ET sequence|legend=1| 31, 68, 99, 229, 328, 557c, 885cc }}
[[Badness]]: 0.020307
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 243/242, 441/440, 3136/3125
Mapping: {{mapping| 1 15 4 7 37 | 0 -16 -2 -5 -40 }}
Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.840
{{Optimal ET sequence|legend=1| 31, 99e, 130, 650ce, 811ce }}
Badness: 0.021069
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 351/350, 441/440, 3584/3575
Mapping: {{mapping| 1 15 4 7 37 -29 | 0 -16 -2 -5 -40 39 }}
Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.829
{{Optimal ET sequence|legend=1| 31, 99e, 130, 291, 421e, 551ce }}
Badness: 0.023074
==== Hemithir ====
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 176/175, 196/195, 275/273
Mapping: {{mapping| 1 15 4 7 37 -3 | 0 -16 -2 -5 -40 8 }}
Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.918
{{Optimal ET sequence|legend=1| 31, 68e, 99ef }}
Badness: 0.031199
=== Hemiwur ===
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 1375/1372
Mapping: {{mapping| 1 15 4 7 11 | 0 -16 -2 -5 -9 }}
Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.884
{{Optimal ET sequence|legend=1| 31, 68, 99, 130e, 229e }}
Badness: 0.029270
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 176/175, 196/195, 275/273
Mapping: {{mapping| 1 15 4 7 11 -3 | 0 -16 -2 -5 -9 8 }}
Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 194.004
{{Optimal ET sequence|legend=1| 31, 68, 99f, 167ef }}
Badness: 0.028432
==== Hemiwar ====
Subgroup: 2.3.5.7.11.13
Comma list: 66/65, 105/104, 121/120, 1375/1372
Mapping: {{mapping| 1 15 4 7 11 23 | 0 -16 -2 -5 -9 -23 }}
Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.698
{{Optimal ET sequence|legend=1| 6f, 31 }}
Badness: 0.044886
=== Quadrawürschmidt ===
This has been documented in Graham Breed's temperament finder as ''semihemiwürschmidt'', but ''quadrawürschmidt'' arguably makes more sense.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 3025/3024, 3136/3125
Mapping: {{mapping| 1 15 4 7 24 | 0 -32 -4 -10 -49 }}
: mapping generators: ~2, ~147/110
Optimal tuning (POTE): ~2 = 1\1, ~147/110 = 503.0404
{{Optimal ET sequence|legend=1| 31, 105be, 136e, 167, 198, 427c }}
Badness: 0.034814
=== Semihemiwür ===
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 3136/3125, 9801/9800
Mapping: {{mapping| 2 14 6 9 -10 | 0 -16 -2 -5 25 }}
: mapping generators: ~99/70, ~495/392
Optimal tuning (POTE): ~99/70 = 1\2, ~28/25 = 193.9021
{{Optimal ET sequence|legend=1| 62e, 68, 130, 198, 328 }}
Badness: 0.044848
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715, 3136/3125
Mapping: {{mapping| 2 14 6 9 -10 25 | 0 -16 -2 -5 25 -26 }}
Optimal tuning (POTE): ~99/70 = 1\2, ~28/25 = 193.9035
{{Optimal ET sequence|legend=1| 62e, 68, 130, 198, 328 }}
Badness: 0.023388
===== Semihemiwürat =====
Subgroup: 2.3.5.7.11.13.17
Comma list: 289/288, 442/441, 561/560, 676/675, 1632/1625
Mapping: {{mapping| 2 14 6 9 -10 25 19 | 0 -16 -2 -5 25 -26 -16 }}
Optimal tuning (POTE): ~17/12 = 1\2, ~28/25 = 193.9112
{{Optimal ET sequence|legend=1| 62e, 68, 130, 198, 328g, 526cfgg }}
Badness: 0.028987
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 289/288, 442/441, 456/455, 476/475, 561/560, 627/625
Mapping: {{mapping| 2 14 6 9 -10 25 19 20 | 0 -16 -2 -5 25 -26 -16 -17 }}
Optimal tuning (POTE): ~17/12 = 1\2, ~19/17 = 193.9145
{{Optimal ET sequence|legend=1| 62e, 68, 130, 198, 328g, 526cfgg }}
Badness: 0.021707
===== Semihemiwürand =====
Subgroup: 2.3.5.7.11.13.17
Comma list: 256/255, 676/675, 715/714, 1001/1000, 1225/1224
Mapping: {{mapping| 2 14 6 9 -10 25 -4 | 0 -16 -2 -5 25 -26 18 }}
Optimal tuning (POTE): ~99/70 = 1\2, ~28/25 = 193.9112
{{Optimal ET sequence|legend=1| 62eg, 68, 130g, 198g }}
Badness: 0.029718
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 256/255, 286/285, 400/399, 476/475, 495/494, 1225/1224
Mapping: {{mapping| 2 14 6 9 -10 25 -4 -3 | 0 -16 -2 -5 25 -26 18 17 }}
Optimal tuning (POTE): ~99/70 = 1\2, ~19/17 = 193.9428
{{Optimal ET sequence|legend=1| 62egh, 68, 130gh, 198gh }}
Badness: 0.029545


[[Category:Temperament families]]
[[Category:Temperament families]]