Compton family: Difference between revisions
m Clarify that "aristoxenean" only applies to the 5-limit version |
Update keys |
||
Line 1: | Line 1: | ||
The '''compton family''', otherwise known as the '''aristoxenean family''', tempers out the [[Pythagorean comma]], 531441/524288 = {{monzo| -19 12 }}, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12edo, two | The '''compton family''', otherwise known as the '''aristoxenean family''', tempers out the [[Pythagorean comma]], 531441/524288 = {{monzo| -19 12 }}, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12edo, two [[cent]]s flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it. | ||
== Compton == | == Compton == | ||
5-limit compton is also known as ''aristoxenean''. It tempers out the Pythagorean comma and has a period of 1\12, so it is the 12edo circle of fifths with an independent dimension for the harmonic 5. Equivalent generators are 5/4, 6/5, 10/9, 16/15 (the secor), 45/32, 135/128 and most importantly, 81/80. In terms of equal temperaments, it is the 12&72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings. | 5-limit compton is also known as ''aristoxenean''. It tempers out the Pythagorean comma and has a period of 1\12, so it is the 12edo circle of fifths with an independent dimension for the harmonic 5. Equivalent generators are 5/4, 6/5, 10/9, 16/15 (the secor), 45/32, 135/128 and most importantly, 81/80. In terms of equal temperaments, it is the 12 & 72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings. | ||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 8: | Line 8: | ||
[[Comma list]]: 531441/524288 | [[Comma list]]: 531441/524288 | ||
{{Mapping|legend=1| 12 19 0 | 0 0 1 }} | |||
: mapping generators: ~256/243, ~5 | |||
[[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 384.884 (~81/80 = 15.116) | [[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 384.884 (~81/80 = 15.116) | ||
Line 29: | Line 29: | ||
[[Comma list]]: 225/224, 250047/250000 | [[Comma list]]: 225/224, 250047/250000 | ||
{{Mapping|legend=1| 12 19 0 -22 | 0 0 1 2 }} | |||
[[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 383.7752 (~126/125 = 16.2248) | [[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 383.7752 (~126/125 = 16.2248) | ||
Line 42: | Line 42: | ||
Comma list: 225/224, 441/440, 4375/4356 | Comma list: 225/224, 441/440, 4375/4356 | ||
Mapping: | Mapping: {{mapping| 12 19 0 -22 -42 | 0 0 1 2 3 }} | ||
Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.2660 (~100/99 = 16.7340) | Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.2660 (~100/99 = 16.7340) | ||
Line 55: | Line 55: | ||
Comma list: 225/224, 351/350, 364/363, 441/440 | Comma list: 225/224, 351/350, 364/363, 441/440 | ||
Mapping: | Mapping: {{mapping| 12 19 0 -22 -42 -67 | 0 0 1 2 3 4 }} | ||
Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.9628 (~105/104 = 16.0372) | Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.9628 (~105/104 = 16.0372) | ||
Line 68: | Line 68: | ||
Comma list: 221/220, 225/224, 289/288, 351/350, 441/440 | Comma list: 221/220, 225/224, 289/288, 351/350, 441/440 | ||
Mapping: | Mapping: {{mapping| 12 19 0 -22 -42 -67 49 | 0 0 1 2 3 4 0 }} | ||
Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 383.7500 (~105/104 = 16.2500) | Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 383.7500 (~105/104 = 16.2500) | ||
Line 81: | Line 81: | ||
Comma list: 225/224, 325/324, 441/440, 1001/1000 | Comma list: 225/224, 325/324, 441/440, 1001/1000 | ||
Mapping: | Mapping: {{mapping| 12 19 0 -22 -42 100 | 0 0 1 2 3 -2 }} | ||
Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 382.6116 (~100/99 = 17.3884) | Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 382.6116 (~100/99 = 17.3884) | ||
Line 94: | Line 94: | ||
Comma list: 225/224, 273/272, 289/288, 325/324, 441/440 | Comma list: 225/224, 273/272, 289/288, 325/324, 441/440 | ||
Mapping: | Mapping: {{mapping| 12 19 0 -22 -42 100 49 | 0 0 1 2 3 -2 0 }} | ||
Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 382.5968 (~100/99 = 17.4032) | Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 382.5968 (~100/99 = 17.4032) | ||
Line 109: | Line 109: | ||
[[Comma list]]: 81/80, 128/125 | [[Comma list]]: 81/80, 128/125 | ||
{{Mapping|legend=1| 12 19 28 0 | 0 0 0 1 }} | |||
: mapping generators: ~16/15, ~7 | |||
[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~7/4 = 973.210 (~64/63 = 26.790) | [[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~7/4 = 973.210 (~64/63 = 26.790) | ||
Line 124: | Line 124: | ||
Comma list: 81/80, 99/98, 128/125 | Comma list: 81/80, 99/98, 128/125 | ||
Mapping: | Mapping: {{mapping| 12 19 28 0 -26 | 0 0 0 1 2 }} | ||
Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 977.277 (~64/63 = 22.723) | Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 977.277 (~64/63 = 22.723) | ||
Line 137: | Line 137: | ||
Comma list: 81/80, 128/125, 540/539 | Comma list: 81/80, 128/125, 540/539 | ||
Mapping: | Mapping: {{mapping| 12 19 28 0 109 | 0 0 0 1 -2 }} | ||
Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 972.136 (~64/63 = 27.864) | Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 972.136 (~64/63 = 27.864) | ||
Line 150: | Line 150: | ||
Comma list: 56/55, 81/80, 128/125 | Comma list: 56/55, 81/80, 128/125 | ||
Mapping: | Mapping: {{mapping| 12 19 28 0 8 | 0 0 0 1 1 }} | ||
Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 967.224 (~64/63 = 32.776) | Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 967.224 (~64/63 = 32.776) | ||
Line 163: | Line 163: | ||
Comma list: 56/55, 66/65, 81/80, 105/104 | Comma list: 56/55, 66/65, 81/80, 105/104 | ||
Mapping: | Mapping: {{mapping| 12 19 28 0 8 11 | 0 0 0 1 1 1 }} | ||
Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 962.778 (~40/39 = 37.232) | Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 962.778 (~40/39 = 37.232) | ||
Line 176: | Line 176: | ||
Comma list: 51/50, 56/55, 66/65, 81/80, 105/104 | Comma list: 51/50, 56/55, 66/65, 81/80, 105/104 | ||
Mapping: | Mapping: {{mapping| 12 19 28 0 8 11 49 | 0 0 0 1 1 1 0 }} | ||
Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 960.223 (~40/39 = 39.777) | Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 960.223 (~40/39 = 39.777) | ||
Line 189: | Line 189: | ||
Comma list: 51/50, 56/55, 66/65, 76/75, 81/80, 96/95 | Comma list: 51/50, 56/55, 66/65, 76/75, 81/80, 96/95 | ||
Mapping: | Mapping: {{mapping| 12 19 28 0 8 11 49 51 | 0 0 0 1 1 1 0 0 }} | ||
Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 959.835 (~40/39 = 40.165) | Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 959.835 (~40/39 = 40.165) | ||
Line 202: | Line 202: | ||
Comma list: 56/55, 81/80, 91/90, 128/125 | Comma list: 56/55, 81/80, 91/90, 128/125 | ||
Mapping: | Mapping: {{mapping| 12 19 28 0 8 78 | 0 0 0 1 1 -1 }} | ||
Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 962.312 (~64/63 = 37.688) | Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 962.312 (~64/63 = 37.688) | ||
Line 215: | Line 215: | ||
Comma list: 51/50, 56/55, 81/80, 91/90, 128/125 | Comma list: 51/50, 56/55, 81/80, 91/90, 128/125 | ||
Mapping: | Mapping:{{mapping| 12 19 28 0 8 78 49 | 0 0 0 1 1 -1 0 }} | ||
Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 961.903 (~64/63 = 38.097) | Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 961.903 (~64/63 = 38.097) | ||
Line 228: | Line 228: | ||
Comma list: 51/50, 56/55, 76/75, 81/80, 91/90, 96/95 | Comma list: 51/50, 56/55, 76/75, 81/80, 91/90, 96/95 | ||
Mapping: | Mapping: {{mapping| 12 19 28 0 8 78 49 51 | 0 0 0 1 1 -1 0 0 }} | ||
Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 961.920 (~64/63 = 38.080) | Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 961.920 (~64/63 = 38.080) | ||
Line 243: | Line 243: | ||
[[Comma list]]: 36/35, 50/49, 64/63 | [[Comma list]]: 36/35, 50/49, 64/63 | ||
{{Mapping|legend=1| 12 19 28 34 0 | 0 0 0 0 1 }} | |||
: mapping generators: ~16/15, ~11 | |||
[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~11/8 = 565.023 (~55/54 = 34.977) | [[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~11/8 = 565.023 (~55/54 = 34.977) | ||
Line 260: | Line 260: | ||
[[Comma list]]: 19683/19600, 33075/32768 | [[Comma list]]: 19683/19600, 33075/32768 | ||
{{Mapping|legend=1| 24 38 0 123 | 0 0 1 -1 }} | |||
{{Multival|legend=1| 0 24 -24 38 -38 -123 }} | {{Multival|legend=1| 0 24 -24 38 -38 -123 }} | ||
: mapping generators: ~36/35, ~5 | |||
[[Optimal tuning]] ([[POTE]]): ~36/35 = 1\24, ~5/4 = 384.033 | [[Optimal tuning]] ([[POTE]]): ~36/35 = 1\24, ~5/4 = 384.033 | ||
Line 277: | Line 277: | ||
Comma list: 243/242, 385/384, 9801/9800 | Comma list: 243/242, 385/384, 9801/9800 | ||
Mapping: | Mapping: {{mapping| 24 38 0 123 83 | 0 0 1 -1 0 }} | ||
Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.054 | Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.054 | ||
Line 290: | Line 290: | ||
Comma list: 243/242, 351/350, 364/363, 385/384 | Comma list: 243/242, 351/350, 364/363, 385/384 | ||
Mapping: | Mapping: {{mapping| 24 38 0 123 83 33 | 0 0 1 -1 0 1 }} | ||
Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.652 | Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.652 | ||
Line 305: | Line 305: | ||
[[Comma list]]: 1029/1024, 118098/117649 | [[Comma list]]: 1029/1024, 118098/117649 | ||
{{Mapping|legend=1| 36 57 0 101 | 0 0 1 0 }} | |||
: mapping generators: ~49/48, ~5 | |||
{{Multival|legend=1| 0 36 0 57 0 -101 }} | {{Multival|legend=1| 0 36 0 57 0 -101 }} | ||
Line 322: | Line 322: | ||
Comma list: 540/539, 1029/1024, 4000/3993 | Comma list: 540/539, 1029/1024, 4000/3993 | ||
Mapping: | Mapping: {{mapping| 36 57 0 101 41 | 0 0 1 0 1 }} | ||
Optimal tuning (POTE): ~49/48 = 1\36, ~5/4 = 384.150 | Optimal tuning (POTE): ~49/48 = 1\36, ~5/4 = 384.150 | ||
Line 335: | Line 335: | ||
[[Comma list]]: 225/224, 243/242, 441/440, 4375/4356 | [[Comma list]]: 225/224, 243/242, 441/440, 4375/4356 | ||
{{Mapping|legend=1| 72 114 167 202 249 266 | 0 0 0 0 0 1 }} | |||
: mapping generators: ~100/99, ~13 | |||
[[Optimal tuning]] ([[POTE]]): ~100/99 = 1\72, ~13/8 = 837.814 | [[Optimal tuning]] ([[POTE]]): ~100/99 = 1\72, ~13/8 = 837.814 | ||
Line 347: | Line 347: | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Compton family| ]] <!-- main article --> | [[Category:Compton family| ]] <!-- main article --> | ||
[[Category:Compton| ]] <!-- key article --> | |||
[[Category:Rank 2]] | [[Category:Rank 2]] | ||