Compton family: Difference between revisions

m Clarify that "aristoxenean" only applies to the 5-limit version
Update keys
Line 1: Line 1:
The '''compton family''', otherwise known as the '''aristoxenean family''', tempers out the [[Pythagorean comma]], 531441/524288 = {{monzo| -19 12 }}, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12edo, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.
The '''compton family''', otherwise known as the '''aristoxenean family''', tempers out the [[Pythagorean comma]], 531441/524288 = {{monzo| -19 12 }}, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12edo, two [[cent]]s flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.


== Compton ==
== Compton ==
5-limit compton is also known as ''aristoxenean''. It tempers out the Pythagorean comma and has a period of 1\12, so it is the 12edo circle of fifths with an independent dimension for the harmonic 5. Equivalent generators are 5/4, 6/5, 10/9, 16/15 (the secor), 45/32, 135/128 and most importantly, 81/80. In terms of equal temperaments, it is the 12&72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings.  
5-limit compton is also known as ''aristoxenean''. It tempers out the Pythagorean comma and has a period of 1\12, so it is the 12edo circle of fifths with an independent dimension for the harmonic 5. Equivalent generators are 5/4, 6/5, 10/9, 16/15 (the secor), 45/32, 135/128 and most importantly, 81/80. In terms of equal temperaments, it is the 12 & 72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings.  


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5
Line 8: Line 8:
[[Comma list]]: 531441/524288
[[Comma list]]: 531441/524288


[[Mapping]]: [{{val| 12 19 0 }}, {{val| 0 0 1 }}
{{Mapping|legend=1| 12 19 0 | 0 0 1 }}


Mapping generators: ~256/243, ~5
: mapping generators: ~256/243, ~5


[[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 384.884 (~81/80 = 15.116)
[[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 384.884 (~81/80 = 15.116)
Line 29: Line 29:
[[Comma list]]: 225/224, 250047/250000
[[Comma list]]: 225/224, 250047/250000


[[Mapping]]: [{{val| 12 19 0 -22 }}, {{val| 0 0 1 2 }}]
{{Mapping|legend=1| 12 19 0 -22 | 0 0 1 2 }}


[[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 383.7752 (~126/125 = 16.2248)
[[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 383.7752 (~126/125 = 16.2248)
Line 42: Line 42:
Comma list: 225/224, 441/440, 4375/4356
Comma list: 225/224, 441/440, 4375/4356


Mapping: [{{val|12 19 0 -22 -42 }}, {{val| 0 0 1 2 3 }}]
Mapping: {{mapping| 12 19 0 -22 -42 | 0 0 1 2 3 }}


Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.2660 (~100/99 = 16.7340)
Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.2660 (~100/99 = 16.7340)
Line 55: Line 55:
Comma list: 225/224, 351/350, 364/363, 441/440
Comma list: 225/224, 351/350, 364/363, 441/440


Mapping: [{{val| 12 19 0 -22 -42 -67 }}, {{val| 0 0 1 2 3 4 }}]
Mapping: {{mapping| 12 19 0 -22 -42 -67 | 0 0 1 2 3 4 }}


Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.9628 (~105/104 = 16.0372)
Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.9628 (~105/104 = 16.0372)
Line 68: Line 68:
Comma list: 221/220, 225/224, 289/288, 351/350, 441/440
Comma list: 221/220, 225/224, 289/288, 351/350, 441/440


Mapping: [{{val| 12 19 0 -22 -42 -67 49 }}, {{val| 0 0 1 2 3 4 0 }}]
Mapping: {{mapping| 12 19 0 -22 -42 -67 49 | 0 0 1 2 3 4 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 383.7500 (~105/104 = 16.2500)
Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 383.7500 (~105/104 = 16.2500)
Line 81: Line 81:
Comma list: 225/224, 325/324, 441/440, 1001/1000
Comma list: 225/224, 325/324, 441/440, 1001/1000


Mapping: [{{val| 12 19 0 -22 -42 100 }}, {{val| 0 0 1 2 3 -2 }}]
Mapping: {{mapping| 12 19 0 -22 -42 100 | 0 0 1 2 3 -2 }}


Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 382.6116 (~100/99 = 17.3884)
Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 382.6116 (~100/99 = 17.3884)
Line 94: Line 94:
Comma list: 225/224, 273/272, 289/288, 325/324, 441/440
Comma list: 225/224, 273/272, 289/288, 325/324, 441/440


Mapping: [{{val| 12 19 0 -22 -42 100 49 }}, {{val| 0 0 1 2 3 -2 0 }}]
Mapping: {{mapping| 12 19 0 -22 -42 100 49 | 0 0 1 2 3 -2 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 382.5968 (~100/99 = 17.4032)
Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 382.5968 (~100/99 = 17.4032)
Line 109: Line 109:
[[Comma list]]: 81/80, 128/125
[[Comma list]]: 81/80, 128/125


[[Mapping]]: [{{val| 12 19 28 0 }}, {{val| 0 0 0 1 }}]
{{Mapping|legend=1| 12 19 28 0 | 0 0 0 1 }}


Mapping generators: ~16/15, ~7
: mapping generators: ~16/15, ~7


[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~7/4 = 973.210 (~64/63 = 26.790)
[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~7/4 = 973.210 (~64/63 = 26.790)
Line 124: Line 124:
Comma list: 81/80, 99/98, 128/125
Comma list: 81/80, 99/98, 128/125


Mapping: [{{val| 12 19 28 0 -26 }}, {{val| 0 0 0 1 2 }}]
Mapping: {{mapping| 12 19 28 0 -26 | 0 0 0 1 2 }}


Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 977.277 (~64/63 = 22.723)
Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 977.277 (~64/63 = 22.723)
Line 137: Line 137:
Comma list: 81/80, 128/125, 540/539
Comma list: 81/80, 128/125, 540/539


Mapping: [{{val| 12 19 28 0 109 }}, {{val| 0 0 0 1 -2 }}]
Mapping: {{mapping| 12 19 28 0 109 | 0 0 0 1 -2 }}


Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 972.136 (~64/63 = 27.864)
Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 972.136 (~64/63 = 27.864)
Line 150: Line 150:
Comma list: 56/55, 81/80, 128/125
Comma list: 56/55, 81/80, 128/125


Mapping: [{{val| 12 19 28 0 8 }}, {{val| 0 0 0 1 1 }}]
Mapping: {{mapping| 12 19 28 0 8 | 0 0 0 1 1 }}


Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 967.224 (~64/63 = 32.776)
Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 967.224 (~64/63 = 32.776)
Line 163: Line 163:
Comma list: 56/55, 66/65, 81/80, 105/104
Comma list: 56/55, 66/65, 81/80, 105/104


Mapping: [{{val| 12 19 28 0 8 11 }}, {{val| 0 0 0 1 1 1 }}]
Mapping: {{mapping| 12 19 28 0 8 11 | 0 0 0 1 1 1 }}


Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 962.778 (~40/39 = 37.232)
Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 962.778 (~40/39 = 37.232)
Line 176: Line 176:
Comma list: 51/50, 56/55, 66/65, 81/80, 105/104
Comma list: 51/50, 56/55, 66/65, 81/80, 105/104


Mapping: [{{val| 12 19 28 0 8 11 49 }}, {{val| 0 0 0 1 1 1 0 }}]
Mapping: {{mapping| 12 19 28 0 8 11 49 | 0 0 0 1 1 1 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 960.223 (~40/39 = 39.777)
Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 960.223 (~40/39 = 39.777)
Line 189: Line 189:
Comma list: 51/50, 56/55, 66/65, 76/75, 81/80, 96/95
Comma list: 51/50, 56/55, 66/65, 76/75, 81/80, 96/95


Mapping: [{{val| 12 19 28 0 8 11 49 51 }}, {{val| 0 0 0 1 1 1 0 0 }}]
Mapping: {{mapping| 12 19 28 0 8 11 49 51 | 0 0 0 1 1 1 0 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 959.835 (~40/39 = 40.165)
Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 959.835 (~40/39 = 40.165)
Line 202: Line 202:
Comma list: 56/55, 81/80, 91/90, 128/125
Comma list: 56/55, 81/80, 91/90, 128/125


Mapping: [{{val| 12 19 28 0 8 78 }}, {{val| 0 0 0 1 1 -1 }}]
Mapping: {{mapping| 12 19 28 0 8 78 | 0 0 0 1 1 -1 }}


Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 962.312 (~64/63 = 37.688)
Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 962.312 (~64/63 = 37.688)
Line 215: Line 215:
Comma list: 51/50, 56/55, 81/80, 91/90, 128/125
Comma list: 51/50, 56/55, 81/80, 91/90, 128/125


Mapping: [{{val| 12 19 28 0 8 78 49 }}, {{val| 0 0 0 1 1 -1 0 }}]
Mapping:{{mapping| 12 19 28 0 8 78 49 | 0 0 0 1 1 -1 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 961.903 (~64/63 = 38.097)
Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 961.903 (~64/63 = 38.097)
Line 228: Line 228:
Comma list: 51/50, 56/55, 76/75, 81/80, 91/90, 96/95
Comma list: 51/50, 56/55, 76/75, 81/80, 91/90, 96/95


Mapping: [{{val| 12 19 28 0 8 78 49 51 }}, {{val| 0 0 0 1 1 -1 0 0 }}]
Mapping: {{mapping| 12 19 28 0 8 78 49 51 | 0 0 0 1 1 -1 0 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 961.920 (~64/63 = 38.080)
Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 961.920 (~64/63 = 38.080)
Line 243: Line 243:
[[Comma list]]: 36/35, 50/49, 64/63
[[Comma list]]: 36/35, 50/49, 64/63


[[Mapping]]: [{{val| 12 19 28 34 0 }}, {{val| 0 0 0 0 1 }}]
{{Mapping|legend=1| 12 19 28 34 0 | 0 0 0 0 1 }}


Mapping generators: ~16/15, ~11
: mapping generators: ~16/15, ~11


[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~11/8 = 565.023 (~55/54 = 34.977)
[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~11/8 = 565.023 (~55/54 = 34.977)
Line 260: Line 260:
[[Comma list]]: 19683/19600, 33075/32768
[[Comma list]]: 19683/19600, 33075/32768


[[Mapping]]: [{{val| 24 38 0 123 }}, {{val| 0 0 1 -1 }}]
{{Mapping|legend=1| 24 38 0 123 | 0 0 1 -1 }}


{{Multival|legend=1| 0 24 -24 38 -38 -123 }}
{{Multival|legend=1| 0 24 -24 38 -38 -123 }}


Mapping generators: ~36/35, ~5
: mapping generators: ~36/35, ~5


[[Optimal tuning]] ([[POTE]]): ~36/35 = 1\24, ~5/4 = 384.033  
[[Optimal tuning]] ([[POTE]]): ~36/35 = 1\24, ~5/4 = 384.033  
Line 277: Line 277:
Comma list: 243/242, 385/384, 9801/9800
Comma list: 243/242, 385/384, 9801/9800


Mapping: [{{val| 24 38 0 123 83 }}, {{val| 0 0 1 -1 0 }}]
Mapping: {{mapping| 24 38 0 123 83 | 0 0 1 -1 0 }}


Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.054
Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.054
Line 290: Line 290:
Comma list: 243/242, 351/350, 364/363, 385/384
Comma list: 243/242, 351/350, 364/363, 385/384


Mapping: [{{val| 24 38 0 123 83 33 }}, {{val| 0 0 1 -1 0 1 }}]
Mapping: {{mapping| 24 38 0 123 83 33 | 0 0 1 -1 0 1 }}


Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.652
Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.652
Line 305: Line 305:
[[Comma list]]: 1029/1024, 118098/117649
[[Comma list]]: 1029/1024, 118098/117649


[[Mapping]]: [{{val| 36 57 0 101 }}, {{val| 0 0 1 0 }}]
{{Mapping|legend=1| 36 57 0 101 | 0 0 1 0 }}


Mapping generators: ~49/48, ~5
: mapping generators: ~49/48, ~5


{{Multival|legend=1| 0 36 0 57 0 -101 }}
{{Multival|legend=1| 0 36 0 57 0 -101 }}
Line 322: Line 322:
Comma list: 540/539, 1029/1024, 4000/3993
Comma list: 540/539, 1029/1024, 4000/3993


Mapping: [{{val| 36 57 0 101 41 }}, {{val| 0 0 1 0 1 }}]
Mapping: {{mapping| 36 57 0 101 41 | 0 0 1 0 1 }}


Optimal tuning (POTE): ~49/48 = 1\36, ~5/4 = 384.150
Optimal tuning (POTE): ~49/48 = 1\36, ~5/4 = 384.150
Line 335: Line 335:
[[Comma list]]: 225/224, 243/242, 441/440, 4375/4356
[[Comma list]]: 225/224, 243/242, 441/440, 4375/4356


[[Mapping]]: [{{val| 72 114 167 202 249 266 }}, {{val| 0 0 0 0 0 1 }}]
{{Mapping|legend=1| 72 114 167 202 249 266 | 0 0 0 0 0 1 }}


Mapping generators: ~100/99, ~13
: mapping generators: ~100/99, ~13


[[Optimal tuning]] ([[POTE]]): ~100/99 = 1\72, ~13/8 = 837.814
[[Optimal tuning]] ([[POTE]]): ~100/99 = 1\72, ~13/8 = 837.814
Line 347: Line 347:
[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Compton family| ]] <!-- main article -->
[[Category:Compton family| ]] <!-- main article -->
[[Category:Compton| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Compton]]