|
|
Line 1: |
Line 1: |
| {{delete}}
| | #redirect [[3L 1s (3/2-equivalent)]] |
| {{Infobox MOS
| |
| | |
| | Name =
| |
|
| |
| | Equave = 3/2
| |
|
| |
| | nLargeSteps = 3
| |
|
| |
| | nSmallSteps = 1
| |
|
| |
| | Equalized = 2
| |
|
| |
| | Collapsed = 1
| |
|
| |
| | Pattern = LLLs
| |
|
| |
| }}'''3L 1s<3/2>''', is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 1s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents).
| |
|
| |
| In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords.
| |
| | |
| [[Basic]] Angel is in [[7edf]], which is a very good fifth-based equal tuning similar to [[12edo]].
| |
|
| |
| ==Notation==
| |
|
| |
| There are 4 main ways to notate the angel scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate angel scales as repeating at the double, triple or quadruple sesquitave (major ninth, thirteenth or seventeenth i. e. ~pentave), however it does make navigating the [[Generator|genchain]] harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s], a major thirteenth which is the Dorian mode of Bijou[9L 3s] or an ~pentave which is the Mixolydian mode of Hextone[12L 4s]. Since there are exactly 8 naturals in double sesquitave notation, 12 in triple sesquitave notation and 16 in quadruple sesquitave notation, letters A-H (FGABHCDEF) or dozenal or hex digits (0123456789XE0 or D1234567FGACD with flats written C molle or 0123456789ABCDEF0 or G123456789ABCDEFG with flats written F molle) may be used.
| |
|
| |
| {| class="wikitable"
| |
|
| |
| |+
| |
|
| |
| Cents<ref name=":0">Fractions repeating more than 4 digits written as continued fractions</ref>
| |
|
| |
| ! colspan="4" |Notation
| |
|
| |
| !Supersoft
| |
|
| |
| !Soft
| |
|
| |
| !Semisoft
| |
|
| |
| !Basic
| |
|
| |
| !Semihard
| |
|
| |
| !Hard
| |
|
| |
| !Superhard
| |
|
| |
| |-
| |
|
| |
| !Diatonic
| |
|
| |
| !Napoli
| |
|
| |
| !Bijou
| |
| !Hextone
| |
| !~15edf
| |
|
| |
| !~11edf
| |
|
| |
| !~18edf
| |
|
| |
| !~7edf
| |
|
| |
| !~17edf
| |
|
| |
| !~10edf
| |
|
| |
| !~13edf
| |
|
| |
| |-
| |
|
| |
| |Do#, Sol#
| |
|
| |
| |F#
| |
|
| |
| |0#, D#
| |
| |0#, G#
| |
| |1\15
| |
| 46; 6.5
| |
|
| |
| |1\11
| |
| 63: 6.{{Overline|3}}
| |
|
| |
| |2\18
| |
| 77; 2, 2.6
| |
|
| |
| | rowspan="2" |1\7
| |
|
| |
| 100
| |
|
| |
| |3\17
| |
| 124; 7.25
| |
|
| |
| |2\10
| |
| 141; 5.{{Overline|6}}
| |
|
| |
| |3\13
| |
|
| |
| 163.{{Overline|63}}
| |
|
| |
| |-
| |
|
| |
| |Reb, Lab
| |
|
| |
| |Gb
| |
|
| |
| |1b, 1c
| |
| |1f
| |
| |3\15
| |
| 138; 3.25
| |
|
| |
| |2\11
| |
| 126; 3.1{{Overline|6}}
| |
|
| |
| |3\18
| |
| 116; 7.75
| |
|
| |
| |2\17
| |
| 82; 1.3{{Overline|18}}
| |
|
| |
| |1\10
| |
| 70; 1.7
| |
|
| |
| |1\13
| |
|
| |
| 54.{{Overline|54}}
| |
|
| |
| |-
| |
|
| |
| |'''Re, La'''
| |
|
| |
| |'''G'''
| |
|
| |
| |'''1'''
| |
| |'''1'''
| |
|
| |
| |'''4\15'''
| |
| '''184; 1.625'''
| |
|
| |
| |'''3\11'''
| |
| '''189; 2.{{Overline|1}}'''
| |
|
| |
| |'''5\18'''
| |
| '''193; 1, 1, 4.{{Overline|6}}'''
| |
|
| |
| |'''2\7'''
| |
|
| |
| '''200'''
| |
|
| |
| |'''5\17'''
| |
| '''206; 1, 8.{{Overline|6}}'''
| |
|
| |
| |'''3\10'''
| |
| '''211; 1, 3.25'''
| |
|
| |
| |'''4\13'''
| |
|
| |
| '''218.{{Overline|18}}'''
| |
|
| |
| |-
| |
|
| |
| |Re#, La#
| |
|
| |
| |G#
| |
|
| |
| |1#
| |
| |1#
| |
| |5\15
| |
| 230; 1.3
| |
|
| |
| |4\11
| |
| 252; 1.58{{Overline|3}}
| |
|
| |
| |7\18
| |
| 270; 1.0{{Overline|3}}
| |
|
| |
| | rowspan="2" |3\7
| |
|
| |
| 300
| |
|
| |
| |8\17
| |
| 331; 29
| |
|
| |
| |5\10
| |
| 352; 1.0625
| |
|
| |
| |7\13
| |
|
| |
| 381.{{Overline|81}}
| |
|
| |
| |-
| |
|
| |
| |Mib, Sib
| |
|
| |
| |Ab
| |
|
| |
| |2b, 2c
| |
| |2f
| |
| |7\15
| |
| 323; 13
| |
|
| |
| |5\11
| |
| 315; 1.2{{Overline|6}}
| |
|
| |
| |8\18
| |
| 309; 1, 2.1
| |
|
| |
| |7\17
| |
| 289; 1, 1.9
| |
|
| |
| |4\10
| |
| 282; 2.8{{Overline|3}}
| |
|
| |
| |5\13
| |
|
| |
| 272.{{Overline|72}}
| |
|
| |
| |-
| |
|
| |
| |Mi, Si
| |
|
| |
| |A
| |
|
| |
| |2
| |
| |2
| |
| |8\15
| |
| 369; 4.{{Overline|3}}
| |
|
| |
| |6\11
| |
| 378; 1.0{{Overline|5}}
| |
|
| |
| |10\18
| |
| 387; 10.{{Overline|3}}
| |
|
| |
| |4\7
| |
|
| |
| 400
| |
|
| |
| |10\17
| |
| 413; 1, 3.8{{Overline|3}}
| |
|
| |
| |6\10
| |
| 423; 1.{{Overline|8}}
| |
|
| |
| |8\13
| |
|
| |
| 436.{{Overline|36}}
| |
|
| |
| |-
| |
|
| |
| |Mi#, Si#
| |
|
| |
| |A#
| |
|
| |
| |2#
| |
| |2#
| |
| |9\15
| |
| 415; 2.6
| |
|
| |
| | rowspan="2" |7\11
| |
| 442; 9.5
| |
|
| |
| |12\18
| |
| 464; 1.0625
| |
|
| |
| |5\7
| |
|
| |
| 500
| |
|
| |
| |13\17
| |
| 537; 14.5
| |
|
| |
| |8\10
| |
| 564; 1.41{{Overline|6}}
| |
|
| |
| |11\13
| |
|
| |
| 600
| |
|
| |
| |-
| |
|
| |
| |Fab, Dob
| |
|
| |
| |Bbb
| |
|
| |
| |3b, 3c
| |
| |3f
| |
| |10\15
| |
| 461; 1, 1.1{{Overline|6}}
| |
|
| |
| |11\18
| |
| 425; 1.24
| |
|
| |
| |4\7
| |
|
| |
| 400
| |
|
| |
| |9\17
| |
| 372; 2.41{{Overline|6}}
| |
|
| |
| |5\10
| |
| 352; 1.0625
| |
|
| |
| |6\13
| |
|
| |
| 327.{{Overline|27}}
| |
|
| |
| |-
| |
|
| |
| |'''Fa, Do'''
| |
|
| |
| |'''Bb'''
| |
|
| |
| |'''3'''
| |
| |'''3'''
| |
|
| |
| |'''11\15'''
| |
| '''507; 1.{{Overline|4}}'''
| |
|
| |
| |'''8\11'''
| |
| '''505; 3.8'''
| |
|
| |
| |'''13\18'''
| |
| '''503; 4, 2.{{Overline|3}}'''
| |
|
| |
| |'''5\7'''
| |
|
| |
| '''500'''
| |
|
| |
| |'''12\17'''
| |
| '''496; 1.8125'''
| |
|
| |
| |'''7\10'''
| |
| '''494; 8.5'''
| |
|
| |
| |'''9\13'''
| |
|
| |
| '''490.{{Overline|90}}'''
| |
|
| |
| |-
| |
|
| |
| |Fa#, Do#
| |
|
| |
| |B
| |
|
| |
| |3#
| |
| |3#
| |
| |12\15
| |
| 553; 1.{{Overline|18}}
| |
|
| |
| |9\11
| |
| 568; 2.375
| |
|
| |
| |15\18
| |
| 580; 1.55
| |
|
| |
| |6\7
| |
|
| |
| 600
| |
|
| |
| |15\17
| |
| 620; 1.45
| |
|
| |
| |9\10
| |
| 635; 3.4
| |
|
| |
| |12\13
| |
|
| |
| 654.{{Overline|54}}
| |
|
| |
| |-
| |
|
| |
| |Fax, Dox
| |
|
| |
| |B#
| |
|
| |
| |3x
| |
| |3x
| |
| |13\15
| |
|
| |
| 600
| |
|
| |
| | rowspan="2" |10\11
| |
|
| |
| 631; 1.{{Overline|72}}
| |
|
| |
| |17\18
| |
|
| |
| 658; 15.5
| |
|
| |
| |7\7
| |
|
| |
| 700
| |
|
| |
| |18\17
| |
|
| |
| 744; 1.208{{Overline|3}}
| |
|
| |
| |11\10
| |
|
| |
| 776; 2.125
| |
|
| |
| |15\13
| |
|
| |
| 818.{{Overline|18}}
| |
|
| |
| |-
| |
|
| |
| |Dob, Solb
| |
| |Hb
| |
| | 4b, 4c
| |
| |4f
| |
| |14\15
| |
|
| |
| 646; 6.5
| |
| |16\18
| |
|
| |
| 619; 2.{{Overline|81}}
| |
| |6\7
| |
|
| |
| 600
| |
| |14\17
| |
|
| |
| 579; 3.{{Overline|2}}
| |
| |8\10
| |
| 564; 1.41{{Overline|6}}
| |
| |10\13
| |
|
| |
| 545.{{Overline|45}}
| |
|
| |
| |-
| |
|
| |
| !Do, Sol
| |
|
| |
| !H
| |
|
| |
| !4
| |
| !4
| |
| !'''15\15'''
| |
|
| |
| '''692; 3.25'''
| |
|
| |
| !'''11\11'''
| |
|
| |
| '''694; 1, 2.8'''
| |
|
| |
| !'''18\18'''
| |
|
| |
| '''696; 1.291'''{{Overline|6}}
| |
|
| |
| !'''7\7'''
| |
|
| |
| '''700'''
| |
|
| |
| !'''17\17'''
| |
|
| |
| '''703; 2, 2.1'''{{Overline|6}}
| |
|
| |
| !'''10\10'''
| |
|
| |
| '''705; 1.1'''{{Overline|3}}
| |
|
| |
| !'''13\13'''
| |
|
| |
| '''709.'''{{Overline|09}}
| |
|
| |
| |-
| |
|
| |
| |Do#, Sol#
| |
|
| |
| |Η#
| |
|
| |
| |4#
| |
| |4#
| |
| |16\15
| |
|
| |
| 738; 2.1{{Overline|6}}
| |
|
| |
| |12\11
| |
|
| |
| 757; 1, 8.5
| |
|
| |
| | 20\18
| |
|
| |
| 774; 5, 6
| |
|
| |
| | rowspan="2" | 8\8
| |
|
| |
| 800
| |
|
| |
| |20\17
| |
|
| |
| 827; 1, 1.41{{Overline|6}}
| |
|
| |
| |12\10
| |
|
| |
| 847; 17
| |
|
| |
| | 16\13
| |
|
| |
| 872.{{Overline|72}}
| |
|
| |
| |-
| |
|
| |
| |Reb, Lab
| |
|
| |
| |Cb
| |
|
| |
| |5b, 5c
| |
| |5
| |
| |18\15
| |
|
| |
| 830; 1.3
| |
|
| |
| |13\11
| |
|
| |
| 821; 19
| |
|
| |
| | 21\18
| |
|
| |
| 812; 1, 9.{{Overline|3}}
| |
|
| |
| | 19\17
| |
|
| |
| 786; 4.8{{Overline|3}}
| |
|
| |
| | 11\10
| |
|
| |
| 776; 2.125
| |
|
| |
| | 14\13
| |
|
| |
| 763.{{Overline|63}}
| |
|
| |
| |-
| |
|
| |
| |'''Re, La'''
| |
|
| |
| |'''C'''
| |
|
| |
| |'''5'''
| |
| |'''5'''
| |
|
| |
| |'''19\15'''
| |
|
| |
| '''876; 1.08{{Overline|3}}'''
| |
|
| |
| |'''14\11'''
| |
|
| |
| '''884; 4.75'''
| |
|
| |
| |'''23\18'''
| |
|
| |
| '''890; 3.1'''
| |
|
| |
| |'''9\5'''
| |
|
| |
| '''900'''
| |
|
| |
| |'''22\17'''
| |
|
| |
| '''910; 2.9'''
| |
|
| |
| |'''13\10'''
| |
|
| |
| '''917; 1.{{Overline|54}}'''
| |
|
| |
| |'''17\13'''
| |
|
| |
| '''927.{{Overline|27}}'''
| |
|
| |
| |-
| |
|
| |
| | Re#, La#
| |
|
| |
| |C#
| |
|
| |
| | 5#
| |
| |5#
| |
| |20\15
| |
|
| |
| 923: 13
| |
|
| |
| |15\11
| |
|
| |
| 947; 2, 1.4
| |
|
| |
| |25\18
| |
|
| |
| 967; 1, 2.875
| |
|
| |
| | rowspan="2" |10\7
| |
|
| |
| 1000
| |
|
| |
| |25\17
| |
|
| |
| 1034; 2, 14
| |
|
| |
| | 15\10
| |
|
| |
| 1058; 1, 4.{{Overline|6}}
| |
|
| |
| |20\13
| |
|
| |
| 1090.{{Overline|90}}
| |
|
| |
| |-
| |
|
| |
| |Mib, Sib
| |
|
| |
| |Db
| |
|
| |
| |6b, 6c
| |
| |6f
| |
| |22\15
| |
|
| |
| 1015; 2.6
| |
|
| |
| |16\11
| |
|
| |
| 1010; 1.9
| |
|
| |
| | 26\18
| |
|
| |
| 1006; 2, 4.{{Overline|6}}
| |
|
| |
| |24\17
| |
|
| |
| 993; 9.{{Overline|6}}
| |
|
| |
| |14\10
| |
|
| |
| 988; 4.25
| |
|
| |
| |18\13
| |
|
| |
| 981.{{Overline|81}}
| |
|
| |
| |-
| |
|
| |
| |Mi, Si
| |
|
| |
| |D
| |
|
| |
| |6
| |
| |6
| |
| |23\15
| |
|
| |
| 1061; 1, 1.1{{Overline|6}}
| |
|
| |
| |17\11
| |
|
| |
| 1073; 1, 2.1{{Overline|6}}
| |
|
| |
| | 28\18
| |
|
| |
| 1083; 1.{{Overline|148}}
| |
|
| |
| |11\7
| |
|
| |
| 1100
| |
|
| |
| | 27\17
| |
|
| |
| 1117; 4, 7
| |
|
| |
| | 16\10
| |
|
| |
| 1129; 2, 2.{{Overline|3}}
| |
|
| |
| | 21\9
| |
|
| |
| 1145.{{Overline|45}}
| |
|
| |
| |-
| |
|
| |
| |Mi#, Si#
| |
|
| |
| | D#
| |
|
| |
| |6#
| |
| |6#
| |
| | 24\15
| |
|
| |
| 1107; 1.{{Overline|4}}
| |
|
| |
| | rowspan="2" | 18\11
| |
|
| |
| 1136; 1.1875
| |
|
| |
| |30\18
| |
|
| |
| 1161; 3.{{Overline|4}}
| |
|
| |
| | 12\7
| |
|
| |
| 1200
| |
|
| |
| |30\17
| |
|
| |
| 1241; 2.{{Overline|63}}
| |
|
| |
| |18\10
| |
|
| |
| 1270; 1.7
| |
|
| |
| |24\13
| |
|
| |
| 1309.{{Overline|09}}
| |
|
| |
| |-
| |
|
| |
| |Fab, Dob
| |
|
| |
| |Ebb
| |
|
| |
| |7b, 7c
| |
| |7f
| |
| |25\15
| |
|
| |
| 1153; 1.{{Overline|18}}
| |
|
| |
| |29\18
| |
|
| |
| 1121; 1, 1, 2.6
| |
|
| |
| | 11\7
| |
|
| |
| 1100
| |
|
| |
| |26\17
| |
|
| |
| 1075; 1.16
| |
|
| |
| |15\10
| |
|
| |
| 1058; 1, 4.{{Overline|6}}
| |
|
| |
| |19\13
| |
|
| |
| 1036.{{Overline|36}}
| |
|
| |
| |-
| |
|
| |
| |'''Fa, Do'''
| |
|
| |
| |'''Eb'''
| |
|
| |
| |'''7'''
| |
| |'''7'''
| |
|
| |
| |'''26\15'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''19\11'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''31\18'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''12\7'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''29\17'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''17\10'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''22\13'''
| |
|
| |
| '''1200'''
| |
|
| |
| |-
| |
|
| |
| |Fa#, Do#
| |
|
| |
| | E
| |
|
| |
| |7#
| |
| |7#
| |
| |27\15
| |
|
| |
| 1246; 6.5
| |
|
| |
| |20\11
| |
|
| |
| 1263; 6.{{Overline|3}}
| |
|
| |
| | 33\18
| |
|
| |
| 1277; 2, 2.6
| |
|
| |
| |13\7
| |
|
| |
| 1300
| |
|
| |
| |32\17
| |
|
| |
| 1324; 7.25
| |
|
| |
| |19\10
| |
|
| |
| 1341; 5.{{Overline|6}}
| |
|
| |
| |25\13
| |
|
| |
| 1363.{{Overline|63}}
| |
|
| |
| |-
| |
|
| |
| |Fax, Dox
| |
|
| |
| |E#
| |
|
| |
| |7x
| |
| |7x
| |
| |28\15
| |
|
| |
| 1292; 3.25
| |
|
| |
| | rowspan="2" |21\11
| |
|
| |
| 1326; 3.1{{Overline|6}}
| |
|
| |
| |35\18
| |
|
| |
| 1354; 1, 5.2
| |
|
| |
| | 14\7
| |
|
| |
| 1400
| |
|
| |
| |35\17
| |
|
| |
| 1448; 3.625
| |
|
| |
| |21\10
| |
|
| |
| 1482; 2.8{{Overline|3}}
| |
|
| |
| |28\13
| |
|
| |
| 1527.{{Overline|27}}
| |
|
| |
| |-
| |
|
| |
| |Dob, Solb
| |
|
| |
| |Fb
| |
|
| |
| |8b, Fc
| |
| |8f
| |
| |29\15
| |
|
| |
| 1338; 2.1{{Overline|6}}
| |
|
| |
| |34\18
| |
|
| |
| 1316; 7.75
| |
|
| |
| |13\7
| |
|
| |
| 1300
| |
|
| |
| |31\17
| |
|
| |
| 1282; 1.3{{Overline|18}}
| |
|
| |
| |18\10
| |
|
| |
| 1270; 1.7
| |
|
| |
| | 23\13
| |
|
| |
| 1254.{{Overline|54}}
| |
|
| |
| |-
| |
|
| |
| !Do, Sol
| |
|
| |
| !F
| |
|
| |
| ! 8, F
| |
| !8
| |
| ! 30\15
| |
|
| |
| 1384; 1.625
| |
|
| |
| ! 22\11
| |
|
| |
| 1389; 2.{{Overline|1}}
| |
|
| |
| !36\18
| |
|
| |
| 1393; 1, 1, 4.{{Overline|6}}
| |
|
| |
| !14\7
| |
|
| |
| 1400
| |
|
| |
| ! 34\17
| |
|
| |
| 1406; 1, 8.{{Overline|6}}
| |
|
| |
| ! 20\10
| |
|
| |
| 1411; 1, 3.25
| |
|
| |
| !26\13
| |
|
| |
| 1418.{{Overline|18}}
| |
|
| |
| |-
| |
|
| |
| |Do#, Sol#
| |
|
| |
| |F#
| |
|
| |
| |8#, F#
| |
| |8#
| |
| |31\15
| |
|
| |
| 1430; 1.3
| |
|
| |
| | 23\11
| |
|
| |
| 1452; 1.58{{Overline|3}}
| |
|
| |
| |38\18
| |
|
| |
| 1470; 1.0{{Overline|3}}
| |
|
| |
| | rowspan="2" |15\7
| |
|
| |
| 1500
| |
|
| |
| | 37\17
| |
|
| |
| 1531; 29
| |
|
| |
| | 22\10
| |
|
| |
| 1552; 1.0625
| |
|
| |
| |29\13
| |
|
| |
| 1581.{{Overline|81}}
| |
|
| |
| |-
| |
|
| |
| | Reb, Lab
| |
|
| |
| |Gb
| |
|
| |
| |9b, Gc
| |
| |9f
| |
| |33\15
| |
|
| |
| 1523; 13
| |
|
| |
| |24\11
| |
|
| |
| 1515; 1.2{{Overline|6}}
| |
|
| |
| | 39\18
| |
|
| |
| 1509; 1, 2.1
| |
|
| |
| |36\17
| |
|
| |
| 1489; 1, 1.9
| |
|
| |
| |21\10
| |
|
| |
| 1482; 2.8{{Overline|3}}
| |
|
| |
| |27\13
| |
|
| |
| 1472.{{Overline|72}}
| |
|
| |
| |-
| |
|
| |
| |'''Re, La'''
| |
|
| |
| |'''G'''
| |
|
| |
| |'''9, G'''
| |
| |9
| |
| |'''34\15'''
| |
|
| |
| '''1569; 4.{{Overline|3}}'''
| |
|
| |
| |'''25\11'''
| |
|
| |
| '''1578; 1.0{{Overline|5}}'''
| |
|
| |
| |'''41\18'''
| |
|
| |
| '''1587; 10.{{Overline|3}}'''
| |
|
| |
| |'''16\7'''
| |
|
| |
| '''1600'''
| |
|
| |
| |'''39\17'''
| |
|
| |
| '''1613; 1, 3.8{{Overline|3}}'''
| |
|
| |
| |'''23\10'''
| |
|
| |
| '''1623; 1.{{Overline|8}}'''
| |
|
| |
| |'''30\13'''
| |
|
| |
| '''1636.{{Overline|36}}'''
| |
|
| |
| |-
| |
|
| |
| |Re#, La#
| |
|
| |
| |G#
| |
|
| |
| |9#, G#
| |
| |9#
| |
| |35\15
| |
|
| |
| 1615; 2.6
| |
|
| |
| |26\11
| |
|
| |
| 1642; 9.5
| |
|
| |
| | 43\18
| |
|
| |
| 1664; 1.0625
| |
|
| |
| | rowspan="2" | 17\7
| |
|
| |
| 1700
| |
|
| |
| |42\17
| |
|
| |
| 1737; 14.5
| |
|
| |
| |25\10
| |
|
| |
| 1764; 1.41{{Overline|6}}
| |
|
| |
| |33\13
| |
|
| |
| 1800
| |
|
| |
| |-
| |
|
| |
| |Mib, Sib
| |
|
| |
| |Ab
| |
|
| |
| |Xb, Ac
| |
| |Af
| |
| |37\15
| |
|
| |
| 1707; 1.{{Overline|4}}
| |
|
| |
| |27\11
| |
|
| |
| 1705; 3.8
| |
|
| |
| |44\18
| |
|
| |
| 1703; 4, 2.{{Overline|3}}
| |
|
| |
| |41\17
| |
|
| |
| 1696; 1.8125
| |
|
| |
| |24\10
| |
|
| |
| 1694; 8.5
| |
|
| |
| |31\13
| |
|
| |
| 1690.{{Overline|90}}
| |
|
| |
| |-
| |
|
| |
| |Mi, Si
| |
|
| |
| |A
| |
|
| |
| |X, A
| |
| |A
| |
| |38\15
| |
|
| |
| 1753; 1.{{Overline|18}}
| |
|
| |
| |28\11
| |
|
| |
| 1768; 2.375
| |
|
| |
| |46\18
| |
|
| |
| 1780; 1.55
| |
|
| |
| |18\7
| |
|
| |
| 1800
| |
|
| |
| |44\17
| |
|
| |
| 1820; 1.45
| |
|
| |
| |26\10
| |
|
| |
| 1835; 3.4
| |
|
| |
| |34\13
| |
|
| |
| 1854.{{Overline|54}}
| |
|
| |
| |-
| |
|
| |
| |Mi#, Si#
| |
|
| |
| | A#
| |
|
| |
| |X#, A#
| |
| |A#
| |
| |39\15
| |
|
| |
| 1800
| |
|
| |
| | rowspan="2" |29\11
| |
|
| |
| 1831; 1.{{Overline|72}}
| |
|
| |
| |48\18
| |
|
| |
| 1858; 15.5
| |
|
| |
| |19\7
| |
|
| |
| 1900
| |
|
| |
| |47\17
| |
|
| |
| 1944; 1.208{{Overline|3}}
| |
|
| |
| |28\10
| |
|
| |
| 1976; 2.125
| |
|
| |
| | 37\13
| |
|
| |
| 2018.{{Overline|18}}
| |
|
| |
| |-
| |
|
| |
| |Fab, Dob
| |
|
| |
| |Bbb
| |
|
| |
| |Ebb, Ccc
| |
| |Bf
| |
| |40\15
| |
|
| |
| 1846; 6.5
| |
|
| |
| |47\18
| |
|
| |
| 1819; 2.{{Overline|81}}
| |
|
| |
| | 18\7
| |
|
| |
| 1800
| |
|
| |
| |43\17
| |
|
| |
| 1779; 3.{{Overline|2}}
| |
|
| |
| |25\10
| |
|
| |
| 1764; 1.41{{Overline|6}}
| |
|
| |
| | 32\13
| |
|
| |
| 1745.{{Overline|45}}
| |
|
| |
| |-
| |
|
| |
| |'''Fa, Do'''
| |
|
| |
| |'''Bb'''
| |
|
| |
| |'''Eb, Cc'''
| |
| |'''B'''
| |
| |'''41\15'''
| |
|
| |
| '''1892; 3.25'''
| |
|
| |
| |'''30\11'''
| |
|
| |
| '''1894; 1, 2.8'''
| |
|
| |
| |'''49\18'''
| |
|
| |
| '''1896; 1.291{{Overline|6}}'''
| |
|
| |
| |'''19\7'''
| |
|
| |
| '''1900'''
| |
|
| |
| |'''46\17'''
| |
|
| |
| '''1903; 2.1{{Overline|6}}'''
| |
|
| |
| |'''27\10'''
| |
|
| |
| '''1905; 1.1{{Overline|3}}'''
| |
|
| |
| |'''35\13'''
| |
|
| |
| '''1909.{{Overline|09}}'''
| |
|
| |
| |-
| |
|
| |
| |Fa#, Do#
| |
|
| |
| | B
| |
|
| |
| |E, C
| |
| |B#
| |
| |42\15
| |
|
| |
| 1938; 2.1{{Overline|6}}
| |
|
| |
| |31\11
| |
|
| |
| 1957; 1, 8.5
| |
|
| |
| | 51\18
| |
|
| |
| 1974; 5.1{{Overline|6}}
| |
|
| |
| |20\7
| |
|
| |
| 2000
| |
|
| |
| |49\17
| |
|
| |
| 2027; 1, 1.41{{Overline|6}}
| |
|
| |
| |29\10
| |
|
| |
| 2047; 17
| |
|
| |
| |38\13
| |
|
| |
| 2072.{{Overline|72}}
| |
|
| |
| |-
| |
|
| |
| |Fax, Dox
| |
|
| |
| |B#
| |
|
| |
| |Ex, Cx
| |
| |Bx
| |
| |43\15
| |
|
| |
| 1984; 1.625
| |
|
| |
| | rowspan="2" |32\11
| |
|
| |
| 2021; 19
| |
|
| |
| |53\18
| |
|
| |
| 2051; 1, 1, 1, 1.4
| |
|
| |
| |21\7
| |
|
| |
| 2100
| |
|
| |
| |52\17
| |
|
| |
| 2151; 2.625
| |
|
| |
| |31\10
| |
|
| |
| 2188; 4.25
| |
|
| |
| |41\13
| |
|
| |
| 2236.{{Overline|36}}
| |
|
| |
| |-
| |
|
| |
| |Dob, Solb
| |
|
| |
| |Hb
| |
|
| |
| |0b, Dc
| |
| |Cf
| |
| |44\15
| |
|
| |
| 2030; 1.3
| |
|
| |
| |52\18
| |
|
| |
| 2012; 1, 9,{{Overline|3}}
| |
|
| |
| |20\7
| |
|
| |
| 2000
| |
|
| |
| |48\17
| |
|
| |
| 1986; 4.8{{Overline|3}}
| |
|
| |
| |28\10
| |
|
| |
| 1976; 2.125
| |
|
| |
| |36\13
| |
|
| |
| 1963.{{Overline|63}}
| |
|
| |
| |-
| |
|
| |
| !Do, Sol
| |
|
| |
| !H
| |
|
| |
| !0, D
| |
| !C
| |
| !45\15
| |
|
| |
| 2076; 1.08'''{{Overline|3}}'''
| |
|
| |
| !33\11
| |
|
| |
| 2084; 4.75
| |
|
| |
| !54\18
| |
|
| |
| 2090; 3.1
| |
|
| |
| !21\7
| |
|
| |
| 2100
| |
|
| |
| !51\17
| |
|
| |
| 2110; 2.9
| |
|
| |
| !30\10
| |
|
| |
| 2117; 1.{{Overline|54}}
| |
|
| |
| !39\13
| |
|
| |
| 2127.{{Overline|27}}
| |
| |-
| |
| |Do#, Sol#
| |
| |Η#
| |
| |0#, D#
| |
| |C#
| |
| |46\15
| |
| 2123; 13
| |
| |34\11
| |
| 2147; 2, 1.4
| |
| |56\18
| |
| 2167; 1, 2.875
| |
| | rowspan="2" |22\7
| |
| 2200
| |
| |54\17
| |
| 2234; 2, 14
| |
| |32\10
| |
| 2258; 1, 4.{{Overline|6}}
| |
| |42\13
| |
| 2090.{{Overline|90}}
| |
| |-
| |
| |Reb, Lab
| |
| |Cb
| |
| |1b, 1c
| |
| |Df
| |
| |48\15
| |
| 2215; 2.6
| |
| |35\11
| |
| 2210; 1.9
| |
| |57\18
| |
| 2206; 2, 4.{{Overline|6}}
| |
| |53\17
| |
| 2193; 9.{{Overline|6}}
| |
| |31\10
| |
|
| |
| 2188; 4.25
| |
| |40\13
| |
| 2181.{{Overline|81}}
| |
| |-
| |
| |'''Re, La'''
| |
| |'''C'''
| |
| |'''1'''
| |
| |'''D'''
| |
| |'''49\15'''
| |
| '''2261; 1, 1.1{{Overline|6}}'''
| |
| |'''36\11'''
| |
| '''2273; 1, 2.1{{Overline|6}}'''
| |
| |'''59\18'''
| |
| '''2283; 1.{{Overline|148}}'''
| |
| |'''23\7'''
| |
| '''2300'''
| |
| |'''56\17'''
| |
| '''2317; 4, 7'''
| |
| |'''33\10'''
| |
| '''2329; 2, 2.{{Overline|3}}'''
| |
| |'''43\13'''
| |
| '''2245.{{Overline|45}}'''
| |
| |-
| |
| |Re#, La#
| |
| |C#
| |
| |1#
| |
| |D#
| |
| |50\15
| |
| 2307; 1.{{Overline|4}}
| |
| |37\11
| |
| 2336; 1.1875
| |
| |61\18
| |
| 2361; 3.{{Overline|4}}
| |
| | rowspan="2" |24\7
| |
| 2400
| |
| |59\17
| |
| 2441; 2.{{Overline|63}}
| |
| |35\10
| |
| 2470; 1.7
| |
| |46\13
| |
| 2509.{{Overline|09}}
| |
| |-
| |
| |Mib, Sib
| |
| |Db
| |
| |2b, 2c
| |
| |Ef
| |
| |52\15
| |
| 2400
| |
| |38\11
| |
| 2400
| |
| |62\18
| |
| 2400
| |
| |58\17
| |
| 2400
| |
| |34\10
| |
| 2400
| |
| |44\13
| |
| 2400
| |
| |-
| |
| |Mi, Si
| |
| |D
| |
| |2
| |
| |E
| |
| |53\15
| |
| 2446; 6.5
| |
| |39\11
| |
| 2463; 6.{{Overline|3}}
| |
| |64\18
| |
| 2477; 2, 2.6
| |
| |25\7
| |
| 2500
| |
| |61\17
| |
| 2524; 7.25
| |
| |36\10
| |
| 2541; 5.{{Overline|6}}
| |
| |47\13
| |
| 2563.{{Overline|63}}
| |
| |-
| |
| |Mi#, Si#
| |
| |D#
| |
| |2#
| |
| |E#
| |
| |54\15
| |
| 2492; 3.25
| |
| | rowspan="2" |40\11
| |
| 2526; 3.1
| |
| |66\18
| |
| 2554; 1, 5.2
| |
| |26\7
| |
| 2600
| |
| |64\17
| |
| 2648; 2.625
| |
| |38\10
| |
| 2682; 2.8{{Overline|3}}
| |
| |50\13
| |
| 2727.{{Overline|27}}
| |
| |-
| |
| |Fab, Dob
| |
| |Ebb
| |
| |3b, 3c
| |
| |Fff
| |
| |55\15
| |
| 2538; 2.1{{Overline|6}}
| |
| |65\18
| |
| 2516; 7.75
| |
| |25\7
| |
| 2500
| |
| |60\17
| |
| 2482; 1.3{{Overline|18}}
| |
| |35\10
| |
| 2470; 1.7
| |
| |45\13
| |
| 2454.{{Overline|54}}
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Eb'''
| |
| |'''3'''
| |
| |'''Ff'''
| |
| |'''56\15'''
| |
| '''2584; 1.625'''
| |
| |'''41\11'''
| |
| '''2589; 2.{{Overline|1}}'''
| |
| |'''67\18'''
| |
| '''2593; 1, 1, 4.{{Overline|6}}'''
| |
| |'''26\7'''
| |
| '''2600'''
| |
| |'''63\17'''
| |
| '''2606; 1, 8.{{Overline|6}}'''
| |
| |'''37\10'''
| |
| '''2611; 1, 3.25'''
| |
| |'''48\13'''
| |
| '''2618.{{Overline|18}}'''
| |
| |-
| |
| |Fa#, Do#
| |
| |E
| |
| |3#
| |
| |F
| |
| |57\15
| |
| 2630; 1.3
| |
| |42\11
| |
| 2652; 1.58{{Overline|3}}
| |
| |69\18
| |
| 2670; 1.0{{Overline|3}}
| |
| |27\7
| |
| 2700
| |
| |66\17
| |
| 2731; 29
| |
| |39\10
| |
| 2752; 1.0625
| |
| |51\13
| |
| 2781.{{Overline|81}}
| |
| |-
| |
| |Fax, Dox
| |
| |E#
| |
| |3x
| |
| |F#
| |
| |58\15
| |
| 2676; 1.08{{Overline|3}}
| |
| | rowspan="2" |43\11
| |
| 2715; 1.2{{Overline|6}}
| |
| |71\18
| |
| 2748; 2.58{{Overline|3}}
| |
| |28\7
| |
| 2800
| |
| |69\17
| |
| 2855; 4.8
| |
| |41\10
| |
| 2894; 8.5
| |
| |54\13
| |
| 2945.{{Overline|45}}
| |
| |-
| |
| |Dob, Solb
| |
| |Fb
| |
| |4b, 4c
| |
| |0f, Gf
| |
| |59\15
| |
| 2723; 13
| |
| |70\18
| |
| 2709; 1, 2.1
| |
| |27\7
| |
| 2700
| |
| |65\17
| |
| 2689; 1, 1.9
| |
| |38\10
| |
| 2682; 2.8{{Overline|3}}
| |
| |49\13
| |
| 2672.{{Overline|72}}
| |
| |-
| |
| !Do, Sol
| |
| !F
| |
| !4
| |
| !0, G
| |
| !60\15
| |
| 2769; 4.'''{{Overline|3}}'''
| |
| !44\11
| |
| 2778; 1.0{{Overline|5}}
| |
| !72\18
| |
| 2787; 3.1
| |
| !28\7
| |
| 2800
| |
| !68\17
| |
| 2813; 1, 3.8{{Overline|3}}
| |
| !40\10
| |
| 2823; 1.{{Overline|8}}
| |
| !52\13
| |
| 2836.{{Overline|36}}
| |
| |}
| |
|
| |
| {| class="wikitable"
| |
| |+Relative cents<ref name=":02">Fractions repeating more than 4 digits written as continued fractions</ref>
| |
| ! colspan="4" | Notation
| |
| !Supersoft
| |
| !Soft
| |
| !Semisoft
| |
| !Basic
| |
| !Semihard
| |
| !Hard
| |
| !Superhard
| |
| |-
| |
| ! Diatonic
| |
| !Napoli
| |
| ! Bijou
| |
| !Hextone
| |
| !~15edf
| |
| !~11edf
| |
| !~18edf
| |
| !~7edf
| |
| !~17edf
| |
| !~10edf
| |
| !~13edf
| |
| |-
| |
| |Do#, Sol#
| |
| |F#
| |
| |0#, D#
| |
| |0#, G#
| |
| |1\15
| |
|
| |
| ''46.{{Overline|6}}''
| |
| |1\11
| |
|
| |
| ''63.{{Overline|63}}''
| |
| |2\18
| |
|
| |
| ''77.7̄''
| |
| | rowspan="2" |1\7
| |
|
| |
| ''100''
| |
| | 3\17
| |
|
| |
| ''123; 1.{{Overline|8}}''
| |
| | 2\10
| |
|
| |
| ''140''
| |
| |3\13
| |
|
| |
| ''161; 1, 1.1{{Overline|6}}''
| |
| |-
| |
| |Reb, Lab
| |
| | Gb
| |
| |1b, 1c
| |
| |1f
| |
| |3\15
| |
|
| |
| ''140''
| |
| |2\11
| |
|
| |
| ''127.{{Overline|27}}''
| |
| |3\18
| |
|
| |
| ''116.{{Overline|6}}''
| |
| | 2\17
| |
|
| |
| ''82; 2.8{{Overline|3}}''
| |
| |1\10
| |
|
| |
| ''70''
| |
| |1\13
| |
|
| |
| ''53; 1.{{Overline|18}}''
| |
| |-
| |
| |'''Re, La'''
| |
| |'''G'''
| |
| |'''1'''
| |
| |'''1'''
| |
| |'''4\15'''
| |
|
| |
| '''''186.{{Overline|6}}'''''
| |
| |'''3\11'''
| |
|
| |
| '''''190.{{Overline|90}}'''''
| |
| |'''5\18'''
| |
|
| |
| '''''194.{{Overline|4}}'''''
| |
| |'''2\7'''
| |
|
| |
| '''''200'''''
| |
| |'''5\17'''
| |
|
| |
| '''''205; 1.1{{Overline|3}}'''''
| |
| |'''3\10'''
| |
|
| |
| '''''210'''''
| |
| |'''4\13'''
| |
|
| |
| '''''215; 2.6'''''
| |
| |-
| |
| |Re#, La#
| |
| | G#
| |
| | 1#
| |
| |1#
| |
| |5\15
| |
|
| |
| ''233.{{Overline|3}}''
| |
| |4\11
| |
|
| |
| ''254.{{Overline|54}}''
| |
| |7\18
| |
|
| |
| ''272.2̄''
| |
| | rowspan="2" |3\7
| |
|
| |
| ''300''
| |
| |8\17
| |
|
| |
| ''329; 2, 2.{{Overline|3}}''
| |
| |5\10
| |
|
| |
| ''350''
| |
| |7\13
| |
|
| |
| ''376; 1.08{{Overline|3}}''
| |
| |-
| |
| |Mib, Sib
| |
| |Ab
| |
| |2b, 2c
| |
| |2f
| |
| |7\15
| |
|
| |
| ''326.{{Overline|6}}''
| |
| |5\11
| |
|
| |
| ''318.{{Overline|18}}''
| |
| | 8\18
| |
|
| |
| ''311.{{Overline|1}}''
| |
| |7\17
| |
|
| |
| ''288; 4.25''
| |
| | 4\10
| |
|
| |
| ''280''
| |
| |5\13
| |
|
| |
| ''269; 4.{{Overline|3}}''
| |
| |-
| |
| |Mi, Si
| |
| |A
| |
| | 2
| |
| |2
| |
| |8\15
| |
|
| |
| ''373.{{Overline|3}}''
| |
| |6\11
| |
|
| |
| ''381.{{Overline|81}}''
| |
| |10\18
| |
|
| |
| ''388.{{Overline|8}}''
| |
| |4\7
| |
|
| |
| ''400''
| |
| |10\17
| |
|
| |
| ''411; 1, 3.25''
| |
| |6\10
| |
|
| |
| ''420''
| |
| |8\13
| |
|
| |
| ''430; 1.3''
| |
| |-
| |
| |Mi#, Si#
| |
| |A#
| |
| |2#
| |
| |2#
| |
| |9\15
| |
|
| |
| ''420''
| |
| | rowspan="2" |7\11
| |
|
| |
| ''445.{{Overline|45}}''
| |
| |12\18
| |
|
| |
| ''466.{{Overline|6}}''
| |
| |5\7
| |
|
| |
| ''500''
| |
| |13\17
| |
|
| |
| ''535; 3.4''
| |
| |8\10
| |
|
| |
| ''560''
| |
| |11\13
| |
|
| |
| ''592; 3.25''
| |
| |-
| |
| |Fab, Dob
| |
| |Bbb
| |
| |3b, 3c
| |
| |3f
| |
| |10\15
| |
|
| |
| ''466.{{Overline|6}}''
| |
| |11\18
| |
|
| |
| ''427.{{Overline|7}}''
| |
| |4\7
| |
|
| |
| ''400''
| |
| |9\17
| |
|
| |
| ''370; 1.7''
| |
| |5\10
| |
|
| |
| ''350''
| |
| |6\13
| |
|
| |
| ''323; 13''
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Bb'''
| |
| |'''3'''
| |
| |'''3'''
| |
| |'''11\15'''
| |
|
| |
| '''''513.{{Overline|3}}'''''
| |
| |'''8\11'''
| |
|
| |
| '''''509.{{Overline|09}}'''''
| |
| |'''13\18'''
| |
|
| |
| '''''505.{{Overline|5}}'''''
| |
| |'''5\7'''
| |
|
| |
| '''''500'''''
| |
| |'''12\17'''
| |
|
| |
| '''''494; 8.5'''''
| |
| |'''7\10'''
| |
|
| |
| '''''490'''''
| |
| |'''9\13'''
| |
|
| |
| '''''484; 1.625'''''
| |
| |-
| |
| |Fa#, Do#
| |
| | B
| |
| |3#
| |
| |3#
| |
| |12\15
| |
|
| |
| ''560''
| |
| |9\11
| |
|
| |
| ''572.{{Overline|72}}''
| |
| | 15\18
| |
|
| |
| ''583.{{Overline|3}}''
| |
| |6\7
| |
|
| |
| ''600''
| |
| |15\17
| |
|
| |
| ''617; 1.41{{Overline|6}}''
| |
| |9\10
| |
|
| |
| ''630''
| |
| |12\13
| |
|
| |
| ''646; 6.5''
| |
| |-
| |
| | Fax, Dox
| |
| |B#
| |
| |3x
| |
| |3x
| |
| |13\15
| |
|
| |
| ''606.{{Overline|6}}''
| |
| | rowspan="2" |10\11
| |
|
| |
| ''636.{{Overline|36}}''
| |
| |17\18
| |
|
| |
| ''661.{{Overline|1}}''
| |
| |7\7
| |
|
| |
| ''700''
| |
| |18\17
| |
|
| |
| ''741; 5.{{Overline|6}}''
| |
| |11\10
| |
|
| |
| ''770''
| |
| |15\13
| |
|
| |
| ''807; 1.{{Overline|4}}''
| |
| |-
| |
| |Dob, Solb
| |
| |Hb
| |
| |4b, 4c
| |
| |4f
| |
| |14\15
| |
|
| |
| ''653.{{Overline|3}}''
| |
| |16\18
| |
|
| |
| ''622.{{Overline|2}}''
| |
| |6\7
| |
|
| |
| ''600''
| |
| | 14\17
| |
|
| |
| ''576; 2.125''
| |
| | 8\10
| |
|
| |
| ''560''
| |
| |10\13
| |
|
| |
| ''538; 2.1{{Overline|6}}''
| |
| |-
| |
| !Do, Sol
| |
| !H
| |
| !4
| |
| !4
| |
| ! colspan="7" |''700''
| |
| |-
| |
| |Do#, Sol#
| |
| |Η#
| |
| |4#
| |
| |4#
| |
| |16\15
| |
|
| |
| ''746.{{Overline|6}}''
| |
| |12\11
| |
|
| |
| ''763.{{Overline|63}}''
| |
| |20\18
| |
|
| |
| ''777.{{Overline|7}}''
| |
| | rowspan="2" |8\7
| |
|
| |
| ''800''
| |
| |20\17
| |
|
| |
| ''823; 1.{{Overline|8}}''
| |
| |12\10
| |
|
| |
| ''840''
| |
| |16\13
| |
|
| |
| ''861; 1, 1.1{{Overline|6}}''
| |
| |-
| |
| |Reb, Lab
| |
| |Cb
| |
| |5b, 5c
| |
| |5
| |
| |18\15
| |
|
| |
| ''840''
| |
| |13\11
| |
|
| |
| ''827.{{Overline|27}}''
| |
| |21\18
| |
|
| |
| ''816.{{Overline|6}}''
| |
| | 19\17
| |
|
| |
| ''782; 2.8{{Overline|3}}''
| |
| |11\10
| |
|
| |
| ''770''
| |
| |14\13
| |
|
| |
| ''753; 1.{{Overline|18}}''
| |
| |-
| |
| |'''Re, La'''
| |
| |'''C'''
| |
| |'''5'''
| |
| |'''5'''
| |
| |'''19\15'''
| |
|
| |
| '''''886.{{Overline|6}}'''''
| |
| |'''14\11'''
| |
|
| |
| '''''890.{{Overline|90}}'''''
| |
| |'''23\18'''
| |
|
| |
| '''''894.{{Overline|4}}'''''
| |
| |'''9\7'''
| |
|
| |
| '''''900'''''
| |
| |'''22\17'''
| |
|
| |
| '''''905; 1.1{{Overline|3}}'''''
| |
| |'''13\10'''
| |
|
| |
| '''''910'''''
| |
| |'''17\13'''
| |
|
| |
| '''''915; 2.6'''''
| |
| |-
| |
| | Re#, La#
| |
| |C#
| |
| |5#
| |
| |5#
| |
| |20\15
| |
|
| |
| ''933.{{Overline|3}}''
| |
| |15\11
| |
|
| |
| ''954.{{Overline|54}}''
| |
| |25\18
| |
|
| |
| ''972.{{Overline|2}}''
| |
| | rowspan="2" | 10\7
| |
|
| |
| ''1000''
| |
| |25\17
| |
|
| |
| ''1029; 2, 2.{{Overline|3}}''
| |
| |15\10
| |
|
| |
| ''1050''
| |
| |20\13
| |
|
| |
| ''1076; 1.08{{Overline|3}}''
| |
| |-
| |
| |Mib, Sib
| |
| |Db
| |
| |6b, 6c
| |
| |6f
| |
| |22\15
| |
|
| |
| ''1026.{{Overline|6}}''
| |
| |16\11
| |
|
| |
| ''1018.{{Overline|18}}''
| |
| |26\18
| |
|
| |
| ''1011.{{Overline|1}}''
| |
| |24\17
| |
|
| |
| ''988; 4.25''
| |
| |14\10
| |
|
| |
| ''980''
| |
| |18\13
| |
|
| |
| ''969; 4.{{Overline|3}}''
| |
| |-
| |
| |Mi, Si
| |
| |D
| |
| |6
| |
| |6
| |
| | 23\15
| |
|
| |
| ''1073.{{Overline|3}}''
| |
| |17\11
| |
|
| |
| ''1081.{{Overline|81}}''
| |
| |28\18
| |
|
| |
| ''1088.{{Overline|8}}''
| |
| |11\7
| |
|
| |
| ''1100''
| |
| |27\17
| |
|
| |
| ''1111; 1, 3.25''
| |
| |16\10
| |
|
| |
| ''1120''
| |
| |21\13
| |
|
| |
| ''1130; 1.3''
| |
| |-
| |
| |Mi#, Si#
| |
| | D#
| |
| |6#
| |
| |6#
| |
| |24\15
| |
|
| |
| ''1120''
| |
| | rowspan="2" | 18\11
| |
|
| |
| ''1145.{{Overline|45}}''
| |
| |30\18
| |
|
| |
| ''1166.{{Overline|6}}''
| |
| |12\7
| |
|
| |
| ''1200''
| |
| | 30\17
| |
|
| |
| ''1235; 3.4''
| |
| |18\10
| |
|
| |
| ''1260''
| |
| |24\13
| |
|
| |
| ''1292; 3.25''
| |
| |-
| |
| | Fab, Dob
| |
| | Ebb
| |
| | 7b, 7c
| |
| |7f
| |
| |25\15
| |
|
| |
| ''1166.{{Overline|6}}''
| |
| |29\18
| |
|
| |
| ''1127.{{Overline|7}}''
| |
| |11\7
| |
|
| |
| ''1100''
| |
| |26\17
| |
|
| |
| ''1070; 1.7''
| |
| |15\10
| |
|
| |
| ''1050''
| |
| |19\13
| |
|
| |
| ''1023; 13''
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Eb'''
| |
| |'''7'''
| |
| |'''7'''
| |
| |'''26\15'''
| |
|
| |
| '''''1213.{{Overline|3}}'''''
| |
| |'''19\11'''
| |
|
| |
| '''''1209.{{Overline|09}}'''''
| |
| |'''31\18'''
| |
|
| |
| '''''1205.{{Overline|5}}'''''
| |
| |'''12\7'''
| |
|
| |
| '''''1200'''''
| |
| |'''29\17'''
| |
|
| |
| '''''1194; 8.5'''''
| |
| |'''17\10'''
| |
|
| |
| '''''1190'''''
| |
| |'''22\13'''
| |
|
| |
| '''''1184; 1.625'''''
| |
| |-
| |
| |Fa#, Do#
| |
| |E
| |
| |7#
| |
| |7#
| |
| |27\15
| |
|
| |
| ''1260''
| |
| |20\11
| |
|
| |
| ''1272.{{Overline|72}}''
| |
| | 33\18
| |
|
| |
| ''1283.{{Overline|3}}''
| |
| |13\7
| |
|
| |
| ''1300''
| |
| |32\17
| |
|
| |
| ''1317; 1.41{{Overline|6}}''
| |
| |19\10
| |
|
| |
| ''1330''
| |
| | 25\13
| |
|
| |
| ''1346; 6.5''
| |
| |-
| |
| |Fax, Dox
| |
| |E#
| |
| |7x
| |
| |7x
| |
| |28\15
| |
|
| |
| ''1306.{{Overline|6}}''
| |
| | rowspan="2" |21\11
| |
|
| |
| ''1336.{{Overline|36}}''
| |
| |35\18
| |
|
| |
| ''1361.{{Overline|1}}''
| |
| |14\7
| |
|
| |
| ''1400''
| |
| |35\17
| |
|
| |
| ''1441; 5.{{Overline|6}}''
| |
| |21\10
| |
|
| |
| ''1470''
| |
| |28\13
| |
|
| |
| ''1507; 1.{{Overline|4}}''
| |
| |-
| |
| |Dob, Solb
| |
| |Fb
| |
| |8b, Fc
| |
| |8f
| |
| |29\15
| |
|
| |
| ''1333.{{Overline|3}}''
| |
| |34\18
| |
|
| |
| ''1322.{{Overline|2}}''
| |
| |13\7
| |
|
| |
| ''1300''
| |
| |31\17
| |
|
| |
| ''1276; 2.125''
| |
| |18\10
| |
|
| |
| ''1260''
| |
| |23\13
| |
|
| |
| ''1238; 2.1{{Overline|6}}''
| |
| |-
| |
| !Do, Sol
| |
| !F
| |
| !8, F
| |
| !8
| |
| ! colspan="7" |''1400''
| |
| |-
| |
| |Do#, Sol#
| |
| |F#
| |
| |8#, F#
| |
| |8#
| |
| |31\15
| |
|
| |
| ''1446.{{Overline|6}}''
| |
| |23\11
| |
|
| |
| ''1463.{{Overline|63}}''
| |
| |38\18
| |
|
| |
| ''1477.7̄''
| |
| | rowspan="2" |15\7
| |
|
| |
| ''1500''
| |
| |37\17
| |
|
| |
| ''1523; 1.{{Overline|8}}''
| |
| |22\10
| |
|
| |
| ''1540''
| |
| | 29\13
| |
|
| |
| ''1561; 1, 1.1{{Overline|6}}''
| |
| |-
| |
| |Reb, Lab
| |
| |Gb
| |
| | 9b, Gc
| |
| |9f
| |
| |33\15
| |
|
| |
| ''1540''
| |
| |24\11
| |
|
| |
| ''1527.{{Overline|27}}''
| |
| |39\18
| |
|
| |
| ''1516.{{Overline|6}}''
| |
| | 36\17
| |
|
| |
| ''1482; 2.8{{Overline|3}}''
| |
| |21\10
| |
|
| |
| ''1470''
| |
| |27\13
| |
|
| |
| ''1453; 1.{{Overline|18}}''
| |
| |-
| |
| |'''Re, La'''
| |
| |'''G'''
| |
| |'''9, G'''
| |
| |9
| |
| |'''34\15'''
| |
|
| |
| '''''1586.{{Overline|6}}'''''
| |
| |'''25\11'''
| |
|
| |
| '''''1590.{{Overline|90}}'''''
| |
| |'''41\18'''
| |
|
| |
| '''''1594.{{Overline|4}}'''''
| |
| |'''16\7'''
| |
|
| |
| '''''1600'''''
| |
| |'''39\17'''
| |
|
| |
| '''''1605; 1.1{{Overline|3}}'''''
| |
| |'''23\10'''
| |
|
| |
| '''''1610'''''
| |
| |'''30\13'''
| |
|
| |
| '''''1615; 2.6'''''
| |
| |-
| |
| |Re#, La#
| |
| |G#
| |
| |9#, G#
| |
| |9#
| |
| |35\15
| |
|
| |
| ''1633.{{Overline|3}}''
| |
| |26\11
| |
|
| |
| ''1654.{{Overline|54}}''
| |
| |43\18
| |
|
| |
| ''1672.{{Overline|2}}''
| |
| | rowspan="2" |17\7
| |
|
| |
| ''1700''
| |
| |42\17
| |
|
| |
| ''1729; 2, 2.{{Overline|3}}''
| |
| |25\10
| |
|
| |
| ''1750''
| |
| |33\13
| |
|
| |
| ''1776; 1.08{{Overline|3}}''
| |
| |-
| |
| |Mib, Sib
| |
| | Ab
| |
| |Xb, Ac
| |
| |Af
| |
| |37\15
| |
|
| |
| ''1726.{{Overline|6}}''
| |
| | 27\11
| |
|
| |
| ''1718.{{Overline|18}}''
| |
| |44\18
| |
|
| |
| ''1711.{{Overline|1}}''
| |
| |41\17
| |
|
| |
| ''1688; 4.25''
| |
| | 24\10
| |
|
| |
| ''1680''
| |
| |31\13
| |
|
| |
| ''1669; 4.{{Overline|3}}''
| |
| |-
| |
| |Mi, Si
| |
| |A
| |
| |X, A
| |
| |A
| |
| |38\15
| |
|
| |
| ''1773.{{Overline|3}}''
| |
| |28\11
| |
|
| |
| ''1781.{{Overline|81}}''
| |
| |46\18
| |
|
| |
| ''1788.{{Overline|8}}''
| |
| |18\7
| |
|
| |
| ''1800''
| |
| | 44\17
| |
|
| |
| ''1811; 1, 3.25''
| |
| |26\10
| |
|
| |
| ''1820''
| |
| |34\13
| |
|
| |
| ''1830; 1.3''
| |
| |-
| |
| |Mi#, Si#
| |
| |A#
| |
| |X#, A#
| |
| |A#
| |
| |39\15
| |
|
| |
| ''1820''
| |
| | rowspan="2" |29\11
| |
|
| |
| ''1845.{{Overline|45}}''
| |
| |48\18
| |
|
| |
| ''1866.{{Overline|6}}''
| |
| |19\7
| |
|
| |
| ''1900''
| |
| |47\17
| |
|
| |
| ''1935; 3.4''
| |
| |28\10
| |
|
| |
| ''1960''
| |
| | 37\13
| |
|
| |
| ''1992; 3.25''
| |
| |-
| |
| |Fab, Dob
| |
| |Bbb
| |
| |Ebb, Ccc
| |
| |Bf
| |
| |40\15
| |
|
| |
| ''1866.{{Overline|6}}''
| |
| |47\18
| |
|
| |
| ''1827.{{Overline|7}}''
| |
| |18\7
| |
|
| |
| ''1800''
| |
| |43\17
| |
|
| |
| ''1770; 1.7''
| |
| |25\10
| |
|
| |
| ''1750''
| |
| |32\13
| |
|
| |
| ''1723; 13''
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Bb'''
| |
| |Eb, Cc
| |
| |'''B'''
| |
| |'''41\15'''
| |
|
| |
| '''''1913.{{Overline|3}}'''''
| |
| |'''30\11'''
| |
|
| |
| '''''1909.{{Overline|09}}'''''
| |
| |'''49\18'''
| |
|
| |
| '''''1905.{{Overline|5}}'''''
| |
| |'''19\7'''
| |
|
| |
| '''''1900'''''
| |
| |'''46\17'''
| |
|
| |
| '''''1894; 8.5'''''
| |
| |'''27\10'''
| |
|
| |
| '''''1890'''''
| |
| |'''35\13'''
| |
|
| |
| '''''1884; 1.625'''''
| |
| |-
| |
| |Fa#, Do#
| |
| |B
| |
| |E, C
| |
| |B#
| |
| | 42\15
| |
|
| |
| ''1960''
| |
| |31\11
| |
|
| |
| ''1972.{{Overline|72}}''
| |
| |51\18
| |
|
| |
| ''1983.{{Overline|3}}''
| |
| |20\7
| |
|
| |
| ''2000''
| |
| |49\17
| |
|
| |
| ''2017; 1.41{{Overline|6}}''
| |
| |29\10
| |
|
| |
| ''2030''
| |
| |38\13
| |
|
| |
| ''2046; 6.5''
| |
| |-
| |
| |Fax, Dox
| |
| |B#
| |
| |Ex, Cx
| |
| |Bx
| |
| |43\15
| |
|
| |
| ''2006.{{Overline|6}}''
| |
| | rowspan="2" |32\11
| |
|
| |
| ''2036.{{Overline|36}}''
| |
| |53\18
| |
|
| |
| ''2061.{{Overline|1}}''
| |
| |21\7
| |
|
| |
| ''2100''
| |
| |52\17
| |
|
| |
| ''2141; 5.{{Overline|6}}''
| |
| |31\10
| |
|
| |
| ''2170''
| |
| |41\13
| |
|
| |
| ''2207; 1.{{Overline|4}}''
| |
| |-
| |
| | Dob, Solb
| |
| |Hb
| |
| |0b, Dc
| |
| |Cf
| |
| |44\15
| |
|
| |
| ''2053.{{Overline|3}}''
| |
| |52\18
| |
|
| |
| ''2022.{{Overline|2}}''
| |
| |20\7
| |
|
| |
| ''2000''
| |
| |48\17
| |
|
| |
| ''1976; 2.125''
| |
| |28\10
| |
|
| |
| ''1960''
| |
| | 36\13
| |
|
| |
| ''1938; 2.1{{Overline|6}}''
| |
| |-
| |
| !Do, Sol
| |
| !H
| |
| !0, D
| |
| !C
| |
| ! colspan="7" |''2100''
| |
| |-
| |
| |Do#, Sol#
| |
| |Η#
| |
| |0#, D#
| |
| |C#
| |
| |46\15
| |
| ''2146.{{Overline|6}}''
| |
| |34\11
| |
| ''2163.{{Overline|63}}''
| |
| |56\18
| |
| ''2177.{{Overline|7}}''
| |
| | rowspan="2" |22\7
| |
| ''2200''
| |
| |54\17
| |
| ''2223; 1.{{Overline|8}}''
| |
| |32\10
| |
| ''2240''
| |
| |42\13
| |
| ''2261; 1, 1.1{{Overline|6}}''
| |
| |-
| |
| |Reb, Lab
| |
| |Cb
| |
| |1b, 1c
| |
| |Df
| |
| |48\15
| |
| ''2240''
| |
| |35\11
| |
| ''2227.{{Overline|27}}''
| |
| |57\18
| |
| ''2216.{{Overline|6}}''
| |
| |53\17
| |
| ''2182; 2.8{{Overline|3}}''
| |
| |31\10
| |
|
| |
| ''2170''
| |
| |40\13
| |
| ''2153; 1.{{Overline|18}}''
| |
| |-
| |
| |'''Re, La'''
| |
| |'''C'''
| |
| |'''1'''
| |
| |'''D'''
| |
| |'''49\15'''
| |
| '''''2286.{{Overline|6}}'''''
| |
| |'''36\11'''
| |
| '''''2290.{{Overline|90}}'''''
| |
| |'''59\18'''
| |
| '''''2294.{{Overline|4}}'''''
| |
| |'''23\7'''
| |
| '''''2300'''''
| |
| |'''56\17'''
| |
| '''''2305; 1.1{{Overline|3}}'''''
| |
| |'''33\10'''
| |
| '''2310'''
| |
| |'''43\13'''
| |
| '''''2315; 2.6'''''
| |
| |-
| |
| |Re#, La#
| |
| |C#
| |
| |1#
| |
| |D#
| |
| |50\15
| |
| ''2223.{{Overline|3}}''
| |
| |37\11
| |
| ''2354.{{Overline|54}}''
| |
| |61\18
| |
| ''2372.''{{Overline|2}}
| |
| | rowspan="2" |24\7
| |
| ''2400''
| |
| |59\17
| |
| ''2429; 2, 2.{{Overline|3}}''
| |
| |35\10
| |
| ''2450''
| |
| |46\13
| |
| ''2476; 1.08{{Overline|3}}''
| |
| |-
| |
| |Mib, Sib
| |
| |Db
| |
| |2b, 2c
| |
| |Ef
| |
| |52\15
| |
| ''2426.{{Overline|6}}''
| |
| |38\11
| |
| ''2418.{{Overline|18}}''
| |
| |62\18
| |
| ''2411.{{Overline|1}}''
| |
| |58\17
| |
| ''2388; 4.25''
| |
| |34\10
| |
| ''2380''
| |
| |44\13
| |
| ''2369; 4.{{Overline|3}}''
| |
| |-
| |
| |Mi, Si
| |
| |D
| |
| |2
| |
| |E
| |
| |53\15
| |
| ''2473,{{Overline|3}}''
| |
| |39\11
| |
| ''2481.{{Overline|81}}''
| |
| |64\11
| |
| ''2488.{{Overline|8}}''
| |
| |25\7
| |
| ''2500''
| |
| |61\17
| |
| ''2511; 1, 3.25''
| |
| |36\10
| |
| ''2520''
| |
| |47\13
| |
| ''2530; 1.3''
| |
| |-
| |
| |Mi#, Si#
| |
| |D#
| |
| |2#
| |
| |E#
| |
| |54\15
| |
| ''2520''
| |
| | rowspan="2" |40\11
| |
| ''2545.{{Overline|45}}''
| |
| |66\18
| |
| ''2566.{{Overline|6}}''
| |
| |26\7
| |
| ''2600''
| |
| |64\17
| |
| ''2635; 3.4''
| |
| |38\10
| |
| ''2660''
| |
| |50\13
| |
| ''2692; 3.25''
| |
| |-
| |
| |Fab, Dob
| |
| |Ebb
| |
| |3b, 3c
| |
| |Fff
| |
| |55\15
| |
| ''2566.{{Overline|6}}''
| |
| |65\18
| |
| ''2527.{{Overline|7}}''
| |
| |25\7
| |
| ''2500''
| |
| |60\17
| |
| ''2470; 1.7''
| |
| |35\10
| |
| ''2450''
| |
| |45\13
| |
| ''2423; 13''
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Eb'''
| |
| |'''3'''
| |
| |'''Ff'''
| |
| |'''56\15'''
| |
| '''''2613.{{Overline|3}}'''''
| |
| |'''41\11'''
| |
| '''''2609.{{Overline|09}}'''''
| |
| |'''67\18'''
| |
| '''''2605.{{Overline|5}}'''''
| |
| |'''26\7'''
| |
| '''''2600'''''
| |
| |'''63\17'''
| |
| '''''2594; 8.5'''''
| |
| |'''37\10'''
| |
| '''''2590'''''
| |
| |'''48\13'''
| |
| '''''2584; 1.625'''''
| |
| |-
| |
| |Fa#, Do#
| |
| |E
| |
| |3#
| |
| |F
| |
| |57\15
| |
| ''2660''
| |
| |42\11
| |
| ''2672.{{Overline|72}}''
| |
| |69\18
| |
| ''2683.{{Overline|3}}''
| |
| |27\7
| |
| ''2700''
| |
| |66\17
| |
|
| |
| ''2717; 1.41{{Overline|6}}''
| |
| |39\10
| |
| ''2730''
| |
| |51\13
| |
|
| |
| ''2746; 6.5''
| |
| |-
| |
| |Fax, Dox
| |
| |E#
| |
| |3x
| |
| |F#
| |
| |58\15
| |
|
| |
| ''2706.{{Overline|6}}''
| |
| | rowspan="2" |43\11
| |
| ''2736.{{Overline|36}}''
| |
| |71\18
| |
|
| |
| ''2761.{{Overline|1}}''
| |
| |28\7
| |
| ''2800''
| |
| |69\17
| |
|
| |
| ''2841; 5.{{Overline|6}}''
| |
| |41\10
| |
| ''2870''
| |
| |54\13
| |
|
| |
| ''2907; 1.{{Overline|4}}''
| |
| |-
| |
| |Dob, Solb
| |
| |Fb
| |
| |4b, 4c
| |
| |0f, Gf
| |
| |59\15
| |
|
| |
| ''2753.{{Overline|3}}''
| |
| |70\18
| |
|
| |
| ''2722.{{Overline|2}}''
| |
| |27\7
| |
| ''2700''
| |
| |65\17
| |
| ''2676; 2.125''
| |
| |38\10
| |
| ''2660''
| |
| |49\13
| |
| ''2638; 2.1{{Overline|6}}''
| |
| |-
| |
| !Do, Sol
| |
| !F
| |
| !4
| |
| !0, G
| |
| ! colspan="7" |''2800''
| |
| |}
| |
|
| |
| ==Intervals==
| |
| {| class="wikitable"
| |
| !Generators
| |
| ! Sesquitave notation
| |
| !Interval category name
| |
| !Generators
| |
| !Notation of 3/2 inverse
| |
| !Interval category name
| |
| |-
| |
| | colspan="6" |The 4-note MOS has the following intervals (from some root):
| |
| |-
| |
| |0
| |
| |Do, Sol
| |
| |perfect unison
| |
| |0
| |
| |Do, Sol
| |
| |sesquitave (just fifth)
| |
| |-
| |
| |1
| |
| |Fa, Do
| |
| |perfect fourth
| |
| | -1
| |
| |Re, La
| |
| |perfect second
| |
| |-
| |
| |2
| |
| |Mib, Sib
| |
| |minor third
| |
| | -2
| |
| |Mi, Si
| |
| |major third
| |
| |-
| |
| |3
| |
| |Reb, Lab
| |
| |diminished second
| |
| | -3
| |
| |Fa#, Do#
| |
| |augmented fourth
| |
| |-
| |
| | colspan="6" |The chromatic 7-note MOS also has the following intervals (from some root):
| |
| |-
| |
| |4
| |
| |Dob, Solb
| |
| |diminished sesquitave
| |
| | -4
| |
| | Do#, Sol#
| |
| |augmented unison (chroma)
| |
| |-
| |
| |5
| |
| |Fab, Dob
| |
| |diminished fourth
| |
| | -5
| |
| |Re#, La#
| |
| |augmented second
| |
| |-
| |
| |6
| |
| | Mibb, Sibb
| |
| |diminished third
| |
| | -6
| |
| |Mi#, Si#
| |
| |augmented third
| |
| |}
| |
|
| |
| ==Genchain==
| |
|
| |
| The generator chain for this scale is as follows:
| |
| {| class="wikitable"
| |
| |Mibb
| |
|
| |
| Sibb
| |
| |Fab
| |
|
| |
| Dob
| |
| |Dob
| |
|
| |
| Solb
| |
| |Reb
| |
|
| |
| Lab
| |
| |Mib
| |
|
| |
| Sib
| |
| |Fa
| |
|
| |
| Do
| |
| |Do
| |
|
| |
| Sol
| |
| |Re
| |
|
| |
| La
| |
| |Mi
| |
|
| |
| Si
| |
| |Fa#
| |
|
| |
| Do#
| |
| |Do#
| |
|
| |
| Sol#
| |
| |Re#
| |
|
| |
| La#
| |
| |Mi#
| |
|
| |
| Si#
| |
| |-
| |
| |d3
| |
| |d4
| |
| |d5
| |
| |d2
| |
| | m3
| |
| |P4
| |
| |P1
| |
| |P2
| |
| |M3
| |
| |A4
| |
| | A1
| |
| |A2
| |
| |A3
| |
| |}
| |
|
| |
| ==Modes==
| |
|
| |
| The mode names are based on the species of fifth:
| |
| {| class="wikitable"
| |
| !Mode
| |
| !Scale
| |
| ![[Modal UDP Notation|UDP]]
| |
| ! colspan="3" |Interval type
| |
| |-
| |
| !name
| |
| !pattern
| |
| !notation
| |
| !2nd
| |
| !3rd
| |
| !4th
| |
| |-
| |
| |Lydian
| |
| |LLLs
| |
| |<nowiki>3|0</nowiki>
| |
| |P
| |
| |M
| |
| | A
| |
| |-
| |
| |Major
| |
| |LLsL
| |
| |<nowiki>2|1</nowiki>
| |
| |P
| |
| |M
| |
| |P
| |
| |-
| |
| | Minor
| |
| |LLsL
| |
| |<nowiki>1|2</nowiki>
| |
| | P
| |
| |m
| |
| |P
| |
| |-
| |
| |Phrygian
| |
| |sLLL
| |
| |<nowiki>0|3</nowiki>
| |
| |d
| |
| |m
| |
| | P
| |
| |}
| |
|
| |
| ==Temperaments==
| |
|
| |
| The most basic rank-2 temperament interpretation of angel is '''Napoli'''. The name "Napoli" comes from the “Neapolitan” sixth triad spelled <code>root-(p-2g)-(2p-3g)</code> (p = 3/2, g = the whole tone) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations.
| |
| ==='''Napoli-Meantone'''===
| |
|
| |
| [[Subgroup]]: 3/2.6/5.8/5
| |
|
| |
| [[Comma]] list: [[81/80]]
| |
| | |
| [[POL2]] generator: ~9/8 = 192.6406
| |
| | |
| [[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}]
| |
| | |
| [[Optimal ET sequence]]: ~(7edf, 11edf, 18edf)
| |
| ==='''Napoli-Superpyth'''===
| |
|
| |
| [[Subgroup]]: 3/2.7/6.14/9
| |
|
| |
| [[Comma]] list: [[64/63]]
| |
| | |
| [[POL2]] generator: ~8/7 = 218.6371
| |
| | |
| [[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}]
| |
| | |
| [[Optimal ET sequence]]: ~(7edf, 10edf, 13edf, 16edf)
| |
| ===Scale tree===
| |
|
| |
| The spectrum looks like this:
| |
| {| class="wikitable"
| |
| ! colspan="3" rowspan="2" |Generator
| |
|
| |
| (bright)
| |
| ! colspan="2" |Cents
| |
| ! rowspan="2" |L
| |
| ! rowspan="2" |s
| |
| ! rowspan="2" |L/s
| |
| ! rowspan="2" | Comments
| |
| |-
| |
| !<u>Normalised<ref name=":03">Fractions repeating more than 4 digits written as continued fractions</ref></u>
| |
| !''ed7\12<ref name=":04">Fractions repeating more than 4 digits written as continued fractions</ref>''
| |
| |-
| |
| | 1\4
| |
| |
| |
| |
| |
| |<u>171; 2.{{Overline|3}}</u>
| |
| |''175''
| |
| |1
| |
| |1
| |
| |1.000
| |
| |Equalised
| |
| |-
| |
| |6\23
| |
| |
| |
| |
| |
| |<u>180</u>
| |
| |''182; 1, 1.{{Overline|5}}''
| |
| |6
| |
| |5
| |
| |1.200
| |
| |
| |
| |-
| |
| |
| |
| | 11\42
| |
| |
| |
| |<u>180; 1.21{{Overline|6}}</u>
| |
| |''183.{{Overline|3}}''
| |
| |11
| |
| |9
| |
| |1.222
| |
| |
| |
| |-
| |
| |5\19
| |
| |
| |
| |
| |
| |<u>181.{{Overline|81}}</u>
| |
| |''184; 4.75''
| |
| |5
| |
| |4
| |
| |1.250
| |
| |
| |
| |-
| |
| |
| |
| |14\53
| |
| |
| |
| |<u>182; 1, 1.5</u>
| |
| |''184; 1, 9.6''
| |
| |14
| |
| |11
| |
| |1.273
| |
| |
| |
| |-
| |
| |
| |
| |9\34
| |
| |
| |
| |<u>183; 19.{{Overline|6}}</u>
| |
| |''185; 3.4''
| |
| | 9
| |
| |7
| |
| |1.286
| |
| |
| |
| |-
| |
| |4\15
| |
| |
| |
| |
| |
| |<u>184; 1.625</u>
| |
| |''186.{{Overline|6}}''
| |
| |4
| |
| |3
| |
| |1.333
| |
| |
| |
| |-
| |
| |
| |
| |11\41
| |
| |
| |
| |<u>185, 1, 10.8{{Overline|3}}</u>
| |
| |''187; 1.{{Overline|24}}''
| |
| |11
| |
| | 8
| |
| |1.375
| |
| |
| |
| |-
| |
| |
| |
| |7\26
| |
| |
| |
| |<u>186.{{Overline|6}}</u>
| |
| |''188; 2.1{{Overline|6}}''
| |
| |7
| |
| |5
| |
| |1.400
| |
| |
| |
| |-
| |
| |
| |
| |10\37
| |
| |
| |
| |<u>187.5</u>
| |
| |''189.{{Overline|189}}''
| |
| |10
| |
| | 7
| |
| | 1.429
| |
| |
| |
| |-
| |
| |
| |
| |13\48
| |
| |
| |
| |<u>187; 1, 19.75</u>
| |
| |''189.58{{Overline|3}}''
| |
| |13
| |
| |9
| |
| |1.444
| |
| |
| |
| |-
| |
| |
| |
| |16\59
| |
| |
| |
| |<u>188; 4.25</u>
| |
| |''189; 1, 4.9''
| |
|
| |
| |16
| |
| |11
| |
| |1.455
| |
| |
| |
| |-
| |
| | 3\11
| |
| |
| |
| |
| |
| |<u>189; 2.{{Overline|1}}</u>
| |
| |''190.{{Overline|90}}''
| |
| | 3
| |
| |2
| |
| |1.500
| |
| |Napoli-Meantone starts here
| |
| |-
| |
| |
| |
| |17\62
| |
| |
| |
| |<u>190; 1, 1.{{Overline|12}}</u>
| |
| |''191; 1, 14.5''
| |
| |17
| |
| |11
| |
| |1.545
| |
| |
| |
| |-
| |
| |
| |
| |14\51
| |
| |
| |
| |<u>190.{{Overline|90}}</u>
| |
| |''192; 8.375''
| |
| |14
| |
| | 9
| |
| | 1.556
| |
| |
| |
| |-
| |
| |
| |
| |11\40
| |
| |
| |
| |<u>191; 3, 2.{{Overline|3}}</u>
| |
| |''192.5''
| |
| |11
| |
| | 7
| |
| | 1.571
| |
| |
| |
| |-
| |
| |
| |
| |8\29
| |
| |
| |
| |<u>192</u>
| |
| |''193; 9.{{Overline|6}}''
| |
| | 8
| |
| | 5
| |
| |1.600
| |
| |
| |
| |-
| |
| |
| |
| |5\18
| |
| |
| |
| |<u>193; 1, 1, 4.{{Overline|6}}</u>
| |
| |''194.{{Overline|4}}''
| |
| |5
| |
| |3
| |
| |1.667
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |12\43
| |
| |<u>194.{{Overline|594}}</u>
| |
| |''195; 2.8{{Overline|6}}''
| |
| | 12
| |
| | 7
| |
| |1.714
| |
| |
| |
| |-
| |
| |
| |
| |7\25
| |
| |
| |
| |<u>195; 2.8{{Overline|6}}</u>
| |
| |''196''
| |
| |7
| |
| |4
| |
| |1.750
| |
| |
| |
| |-
| |
| |
| |
| |9\32
| |
| |
| |
| |<u>196.{{Overline|36}}</u>
| |
| |''196.875''
| |
| |9
| |
| |5
| |
| |1.800
| |
| |
| |
| |-
| |
| |
| |
| |11\39
| |
| |
| |
| |<u>197; 67</u>
| |
| |''197; 2, 3.4''
| |
| |11
| |
| | 6
| |
| |1.833
| |
| |
| |
| |-
| |
| |
| |
| |13\46
| |
| |
| |
| |<u>197; 2.{{Overline|135}}</u>
| |
| |''197; 1, 4.75''
| |
| | 13
| |
| | 7
| |
| | 1.857
| |
| |
| |
| |-
| |
| |
| |
| |15\53
| |
| |
| |
| |<u>197; 1, 2, 1, 1.{{Overline|54}}</u>
| |
| |''198; 8.8{{Overline|3}}''
| |
| |15
| |
| |8
| |
| |1.875
| |
| |
| |
| |-
| |
| |
| |
| | 17\60
| |
| |
| |
| |<u>198; 17.1{{Overline|6}}</u>
| |
| |''198.{{Overline|3}}''
| |
| |17
| |
| | 9
| |
| | 1.889
| |
| |
| |
| |-
| |
| |
| |
| |19\67
| |
| |
| |
| |<u>198: 3, 1, 28</u>
| |
| |''198, 1, 1.{{Overline|03}}''
| |
| |19
| |
| | 10
| |
| |1.900
| |
| |
| |
| |-
| |
| |
| |
| |21\74
| |
| |
| |
| |<u>198; 2.3{{Overline|518}}</u>
| |
| | ''198.{{Overline |''198.{{Overline|648}}''
| |
| |21
| |
| | 11
| |
| |1.909
| |
| |
| |
| |-
| |
| |
| |
| |23\81
| |
| |
| |
| |<u>198; 1, 3, 1.7</u>
| |
| |''198; 1, 3, 3.8''
| |
| |23
| |
| |12
| |
| | 1.917
| |
| |
| |
| |-
| |
| |
| |
| | 25\88
| |
| |
| |
| |<u>198; 1, 2, 12.25</u>
| |
| |''198.8{{Overline|63}}''
| |
| |25
| |
| | 13
| |
| |1.923
| |
| |
| |
| |-
| |
| |
| |
| |27\95
| |
| |
| |
| |<u>198; 1, 3.{{Overline|405}}</u>
| |
| |''198; 1.0{{Overline|5}}''
| |
| |27
| |
| |14
| |
| |1.929
| |
| |
| |
| |-
| |
| |
| |
| |29\102
| |
| |
| |
| |<u>198; 1, 1.1{{Overline|6}}</u>
| |
| |''199; 51''
| |
| |29
| |
| |15
| |
| |1.933
| |
| |
| |
| |-
| |
| |2\7
| |
| |
| |
| |
| |
| |<u>200</u>
| |
| |''200''
| |
| |2
| |
| |1
| |
| |2.000
| |
| | Napoli-Meantone ends, Napoli-Pythagorean begins
| |
| |-
| |
| |
| |
| |17\59
| |
| |
| |
| |<u>201.{{Overline|9801}}</u>
| |
| |''201; 1, 2.2{{Overline|7}}''
| |
| |17
| |
| |8
| |
| |2.125
| |
| |
| |
| |-
| |
| |
| |
| | 15\52
| |
| |
| |
| |<u>202; 4.0{{Overline|45}}</u>
| |
| |''201; 1.08{{Overline|3}}''
| |
| |15
| |
| |7
| |
| |2.143
| |
| |
| |
| |-
| |
| |
| |
| |13\45
| |
| |
| |
| |<u>202; 1, 1, 2.0{{Overline|6}}</u>
| |
| |''202.{{Overline|2}}''
| |
| |13
| |
| |6
| |
| |2.167
| |
| |
| |
| |-
| |
| |
| |
| |11\38
| |
| |
| |
| |<u>203; 13</u>
| |
| |''202; 1.58{{Overline|3}}''
| |
| |11
| |
| |5
| |
| |2.200
| |
| |
| |
| |-
| |
| |
| |
| |9\31
| |
| |
| |
| |<u>203; 1, 3.41{{Overline|6}}</u>
| |
| |''203; 4, 2.{{Overline|3}}''
| |
| |9
| |
| |4
| |
| | 2.250
| |
| |
| |
| |-
| |
| |
| |
| |7\24
| |
| |
| |
| |<u>204; 1. 7.2</u>
| |
| |''204.1{{Overline|6}}''
| |
| | 7
| |
| |3
| |
| |2.333
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |12\41
| |
| |<u>205; 1.4</u>
| |
| |''204; 1. 7.2''
| |
| |12
| |
| |5
| |
| |2.400
| |
| |
| |
| |-
| |
| |
| |
| |5\17
| |
| |
| |
| |<u>206; 1, 8.{{Overline|6}}</u>
| |
| |''205; 1.1{{Overline|3}}''
| |
| |5
| |
| |2
| |
| |2.500
| |
| |Napoli-Neogothic heartland is from here…
| |
| |-
| |
| |
| |
| |
| |
| |18\61
| |
| |<u>207; 1.{{Overline|4}}</u>
| |
| |''206; 1.{{Overline|259}}''
| |
| |18
| |
| |7
| |
| | 2.571
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |13\44
| |
| |<u>208</u>
| |
| |''206.{{Overline|81}}''
| |
| |13
| |
| | 5
| |
| | 2.600
| |
| |
| |
| |-
| |
| |
| |
| |8\27
| |
| |
| |
| |<u>208; 1.4375</u>
| |
| |''207.{{Overline|407}}''
| |
| | 8
| |
| |3
| |
| |2.667
| |
| |…to here
| |
| |-
| |
| |
| |
| |11\37
| |
| |
| |
| |<u>209; 1.{{Overline|90}}</u>
| |
| |''208.{{Overline|108}}''
| |
| |11
| |
| |4
| |
| | 2.750
| |
| |
| |
| |-
| |
| |
| |
| |14\47
| |
| |
| |
| |<u>210</u>
| |
| |''208; 1.958{{Overline|3}}''
| |
| | 14
| |
| | 5
| |
| |2.800
| |
| |
| |
| |-
| |
| |
| |
| |17\57
| |
| |
| |
| |<u>210; 3.2{{Overline|3}}</u>
| |
| |''208; 1.29{{Overline|54}}''
| |
| |17
| |
| |6
| |
| |2.833
| |
| |
| |
| |-
| |
| |
| |
| | 20\67
| |
| |
| |
| |<u>210; 1.9</u>
| |
| |''208; 1, 21.{{Overline|3}}''
| |
| | 20
| |
| |7
| |
| |2.857
| |
| |
| |
| |-
| |
| |
| |
| | 23\77
| |
| |
| |
| |<u>210; 1.4{{Overline|5}}</u>
| |
| |''209.{{Overline|09}}''
| |
| |23
| |
| |8
| |
| |2.875
| |
| |
| |
| |-
| |
| |3\10
| |
| |
| |
| |
| |
| |<u>211; 1, 3.25</u>
| |
| |''210''
| |
| |3
| |
| | 1
| |
| |3.000
| |
| |Napoli-Pythagorean ends, Napoli-Superpyth begins
| |
| |-
| |
| |
| |
| |22\73
| |
| |
| |
| |<u>212; 1, 9.{{Overline|3}}</u>
| |
| |''210; 1, 23.{{Overline|3}}''
| |
| |22
| |
| |7
| |
| |3.143
| |
| |
| |
| |-
| |
| |
| |
| |19\63
| |
| |
| |
| |<u>213; 11.{{Overline|8}}</u>
| |
| |''211.{{Overline|1}}''
| |
| |19
| |
| |6
| |
| |3.167
| |
| |
| |
| |-
| |
| |
| |
| |16\53
| |
| |
| |
| |<u>213.{{Overline|3}}</u>
| |
| |''211; 3, 8.5''
| |
| |16
| |
| |5
| |
| |3.200
| |
| |
| |
| |-
| |
| |
| |
| |13\43
| |
| |
| |
| |<u>213; 1, 2.3{{Overline|18}}</u>
| |
| |''211; 1.{{Overline|592}}''
| |
| |13
| |
| |4
| |
| |3.250
| |
| |
| |
| |-
| |
| |
| |
| | 10\33
| |
| |
| |
| |<u>214; 3.5</u>
| |
| |''212.{{Overline|12}}''
| |
| |10
| |
| |3
| |
| |3.333
| |
| |
| |
| |-
| |
| |
| |
| |7\23
| |
| |
| |
| |<u>215; 2.6</u>
| |
| |''213; 23''
| |
| |7
| |
| |2
| |
| |3.500
| |
| |
| |
| |-
| |
| |
| |
| |11\36
| |
| |
| |
| |<u>216; 2.541{{Overline|6}}</u>
| |
| |''213.{{Overline|3}}''
| |
| | 11
| |
| |3
| |
| |3.667
| |
| |
| |
| |-
| |
| |
| |
| |15\49
| |
| |
| |
| |<u>216; 1.152{{Overline|7}}</u>
| |
| |''214; 3.5''
| |
| |15
| |
| |4
| |
| |3.750
| |
| |
| |
| |-
| |
| |
| |
| |19\62
| |
| |
| |
| |<u>217; 7</u>
| |
| |''214; 1.9375''
| |
| |19
| |
| |5
| |
| |3.800
| |
| |
| |
| |-
| |
| |4\13
| |
| |
| |
| |
| |
| |<u>218.{{Overline|18}}</u>
| |
| |''215; 2.6''
| |
| |4
| |
| |1
| |
| |4.000
| |
| |
| |
| |-
| |
| |
| |
| |13\42
| |
| |
| |
| |<u>219; 1, 2.55</u>
| |
| |''216.{{Overline|6}}''
| |
| |13
| |
| |3
| |
| |4.333
| |
| |
| |
| |-
| |
| |
| |
| |9\29
| |
| |
| |
| |<u>220; 2.45</u>
| |
| |''217; 4, 7''
| |
| |9
| |
| |2
| |
| |4.500
| |
| |
| |
| |-
| |
| |
| |
| |14\45
| |
| |
| |
| |<u>221; 19</u>
| |
| |''217.{{Overline|7}}''
| |
| |14
| |
| | 3
| |
| | 4.667
| |
| |
| |
| |-
| |
| |5\16
| |
| |
| |
| |
| |
| |<u>222.{{Overline|2}}</u>
| |
| |''218.75''
| |
| |5
| |
| | 1
| |
| |5.000
| |
| |Napoli-Superpyth ends
| |
| |-
| |
| |
| |
| |16\51
| |
| |
| |
| |<u>223; 3.{{Overline|90}}</u>
| |
| |''219; 1, 1.55''
| |
| |16
| |
| |3
| |
| |5.333
| |
| |
| |
| |-
| |
| |
| |
| |11\35
| |
| |
| |
| |<u>223; 1, 2.6875</u>
| |
| |''220''
| |
| |11
| |
| |2
| |
| |5.500
| |
| |
| |
| |-
| |
| |
| |
| |17\54
| |
| |
| |
| |<u>224; 5.7{{Overline|2}}</u>
| |
| |''220.{{Overline|370}}''
| |
| | 17
| |
| | 3
| |
| |5.667
| |
| |
| |
| |-
| |
| |6\19
| |
| |
| |
| |
| |
| |<u>225</u>
| |
| |''221; 19''
| |
| |6
| |
| |1
| |
| |6.000
| |
| |
| |
| |-
| |
| |1\3
| |
| |
| |
| |
| |
| |<u>240</u>
| |
| |''233.{{Overline|3}}''
| |
| |1
| |
| |0
| |
| |→ inf
| |
| |Paucitonic
| |
| |}
| |