Gammic family: Difference between revisions

Cmloegcmluin (talk | contribs)
"optimal GPV sequence" → "optimal ET sequence", per Talk:Optimal_ET_sequence
Update keys
Line 1: Line 1:
The [[Carlos Gamma]] rank-1 temperament divides 3/2 into 20 equal parts, 11 of which give a 5/4. This is closely related to the rank-2 microtemperament tempering out {{monzo| -29 -11 20 }}. This temperament, '''gammic''', takes 11 [[generator]] steps to reach 5/4, and 20 to reach 3/2. The generator in question is 1990656/1953125 = {{monzo| 13 5 -9 }}, which when suitably tempered is very close to 5/171 octaves, which makes for an ideal gammic tuning. As a 5-limit temperament supported by [[171edo|171EDO]], [[Schismatic family|schismatic]] temperament makes for a natural comparison. Schismatic, with a wedgie of {{multival|1 -8 -15}} is plainly much less complex than gammic with wedgie {{multival| 20 11 -29 }}, but people seeking the exotic might prefer gammic even so. The 34-note MOS is interesting, being a 1L 33s refinement of the [[34edo|34EDO]] tuning. Of course gammic can be tuned to 34, which makes the two equivalent, and would rather remove the point of Carlos Gamma if used for it.
The [[Carlos Gamma]] rank-1 temperament divides 3/2 into 20 equal parts, 11 of which give a 5/4. This is closely related to the rank-2 microtemperament tempering out {{monzo| -29 -11 20 }}. This temperament, '''gammic''', takes 11 [[generator]] steps to reach 5/4, and 20 to reach 3/2. The generator in question is 1990656/1953125 = {{monzo| 13 5 -9 }}, which when suitably tempered is very close to 5/171 octaves, which makes for an ideal gammic tuning. As a 5-limit temperament supported by [[171edo]], [[Schismatic family|schismatic]] temperament makes for a natural comparison. Schismatic, with a wedgie of {{multival| 1 -8 -15 }} is plainly much less complex than gammic with wedgie {{multival| 20 11 -29 }}, but people seeking the exotic might prefer gammic even so. The 34-note mos is interesting, being a 1L 33s refinement of the [[34edo]] tuning. Of course gammic can be tuned to 34, which makes the two equivalent, and would rather remove the point of Carlos Gamma if used for it.


Because 171 is such a strong [[7-limit]] system, it is natural to extend gammic to the 7-limit. This we may do by adding [[4375/4374]] to the comma list, giving a wedgie of {{multival|20 11 96 -29 96 192}}. 96 gammic generators finally reach 7, which is a long way to go compared to the 39 generator steps of pontiac. If someone wants to make the trip, a 103-note MOS is possible.
Because 171 is such a strong [[7-limit]] system, it is natural to extend gammic to the 7-limit. This we may do by adding [[4375/4374]] to the comma list, giving a wedgie of {{multival| 20 11 96 -29 96 192 }}. 96 gammic generators finally reach 7, which is a long way to go compared to the 39 generator steps of pontiac. If someone wants to make the trip, a 103-note mos is possible.


== Gammic ==
== Gammic ==
Subgroup: 2.3.5
[[Subgroup]]: 2.3.5


[[Comma]]: {{monzo| -29 -11 20 }}
[[Comma list]]: {{monzo| -29 -11 20 }}


[[Mapping]]: [{{val|1 1 2}}, {{val|0 20 11}}]
{{Mapping|legend=1| 1 1 2 | 0 20 11 }}


[[POTE generator]]: ~1990656/1953125 = 35.0964
: mapping generators: ~2, ~1990656/1953125
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1990656/1953125 = 35.0964


{{Optimal ET sequence|legend=1| 34, 103, 137, 171, 547, 718, 889, 1607 }}
{{Optimal ET sequence|legend=1| 34, 103, 137, 171, 547, 718, 889, 1607 }}
Line 17: Line 19:


== Septimal gammic ==
== Septimal gammic ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4375/4374, 6591796875/6576668672
[[Comma list]]: 4375/4374, 6591796875/6576668672


[[Mapping]]: [{{val|1 1 2 0}}, {{val|0 20 11 96}}]
{{Mapping|legend=1| 1 1 2 0 | 0 20 11 96 }}


[[POTE generator]]: ~234375/229376 = 35.0904
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~234375/229376 = 35.0904


{{Optimal ET sequence|legend=1| 34d, 171, 205, 1402, 1573, 1744, 1915 }}
{{Optimal ET sequence|legend=1| 34d, 171, 205, 1402, 1573, 1744, 1915 }}
Line 34: Line 36:
Comma list: 243/242, 4375/4356, 100352/99825
Comma list: 243/242, 4375/4356, 100352/99825


Mapping: [{{val|1 1 2 0 2}}, {{val|0 20 11 96 50}}]
Mapping: {{mapping| 1 1 2 0 2 | 0 20 11 96 50 }}


POTE generator: ~45/44 = 35.089
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 35.089


{{Optimal ET sequence|legend=1| 34d, 137d, 171 }}
{{Optimal ET sequence|legend=1| 34d, 137d, 171 }}
Line 47: Line 49:
Comma list: 243/242, 364/363, 625/624, 2200/2197
Comma list: 243/242, 364/363, 625/624, 2200/2197


Mapping: [{{val|1 1 2 0 2 3}}, {{val|0 20 11 96 50 24}}]
Mapping: {{mapping| 1 1 2 0 2 3 | 0 20 11 96 50 24 }}


POTE generator: ~45/44 = 35.091
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 35.091


{{Optimal ET sequence|legend=1| 34d, 137d, 171 }}
{{Optimal ET sequence|legend=1| 34d, 137d, 171 }}
Line 60: Line 62:
Comma list: 243/242, 364/363, 375/374, 595/594, 2200/2197
Comma list: 243/242, 364/363, 375/374, 595/594, 2200/2197


Mapping: [{{val|1 1 2 0 2 3 4}}, {{val|0 20 11 96 50 24 3}}]
Mapping: {{mapping| 1 1 2 0 2 3 4 | 0 20 11 96 50 24 3 }}


POTE generator: ~45/44 = 35.090
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 35.090


{{Optimal ET sequence|legend=1| 34d, 137d, 171 }}
{{Optimal ET sequence|legend=1| 34d, 137d, 171 }}
Line 69: Line 71:


== Gammy ==
== Gammy ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 225/224, 94143178827/91913281250
[[Comma list]]: 225/224, 94143178827/91913281250


[[Mapping]]: [{{val|1 1 2 1}}, {{val|0 20 11 62}}]
[[Mapping]]: {{mapping| 1 1 2 1 | 0 20 11 62 }}


{{Multival|legend=1|20 11 62 -29 42 113}}
{{Multival|legend=1|20 11 62 -29 42 113}}


[[POTE generator]]: ~1990656/1953125 = 34.984
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1990656/1953125 = 34.984


{{Optimal ET sequence|legend=1| 34d, 69d, 103, 240, 343b }}
{{Optimal ET sequence|legend=1| 34d, 69d, 103, 240, 343b }}
Line 88: Line 90:
Comma list: 225/224, 243/242, 215622/214375
Comma list: 225/224, 243/242, 215622/214375


Mapping: [{{val|1 1 2 1 2}}, {{val|0 20 11 62 50}}]
Mapping: {{mapping| 1 1 2 1 2 | 0 20 11 62 50 }}


POTE generator: ~45/44 = 34.985
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 34.985


{{Optimal ET sequence|legend=1| 34d, 69de, 103, 240, 343be }}
{{Optimal ET sequence|legend=1| 34d, 69de, 103, 240, 343be }}
Line 101: Line 103:
Comma list: 225/224, 243/242, 351/350, 1188/1183
Comma list: 225/224, 243/242, 351/350, 1188/1183


Mapping: [{{val|1 1 2 1 2 3}}, {{val|0 20 11 62 50 24}}]
Mapping: {{mapping| 1 1 2 1 2 3 | 0 20 11 62 50 24 }}


POTE generator: ~45/44 = 34.988
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 34.988


{{Optimal ET sequence|legend=1| 34d, 69de, 103, 240, 343be }}
{{Optimal ET sequence|legend=1| 34d, 69de, 103, 240, 343be }}
Line 114: Line 116:
Comma list: 225/224, 243/242, 351/350, 375/374, 1188/1183
Comma list: 225/224, 243/242, 351/350, 375/374, 1188/1183


Mapping: [{{val|1 1 2 1 2 3 4}}, {{val|0 20 11 62 50 24 3}}]
Mapping: {{mapping| 1 1 2 1 2 3 4 | 0 20 11 62 50 24 3 }}


POTE generator: ~45/44 = 34.997
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 34.997


{{Optimal ET sequence|legend=1| 34d, 69de, 103, 137, 240 }}
{{Optimal ET sequence|legend=1| 34d, 69de, 103, 137, 240 }}
Line 123: Line 125:


== Neptune ==
== Neptune ==
A more interesting extension is to neptune, which divides an octave plus a gammic generator in half, to get a 10/7 generator. Neptune adds [[2401/2400]] to the gammic comma, and may be described as the 68&171 temperament. The generator chain goes merrily on, stacking one 10/7 over another, until after eighteen generator steps 6/5 (up nine octaves) is reached. Then in succession we get 12/7, the neutral third, 7/4 and 5/4. Two neutral thirds then gives a fifth, and these intervals with their inverses are the full set of septimal consonances. [[171edo|171EDO]] makes a good tuning, and we can also choose to make any of the consonances besides 7/5 and 10/7 just, including the fifth, which gives a tuning extending [[Carlos Gamma]].  
A more interesting extension is to neptune, which divides an octave plus a gammic generator in half, to get a 10/7 generator. Neptune adds [[2401/2400]] to the gammic comma, and may be described as the 68&171 temperament. The generator chain goes merrily on, stacking one 10/7 over another, until after eighteen generator steps 6/5 (up nine octaves) is reached. Then in succession we get 12/7, the neutral third, 7/4 and 5/4. Two neutral thirds then gives a fifth, and these intervals with their inverses are the full set of septimal consonances. [[171edo]] makes a good tuning, and we can also choose to make any of the consonances besides 7/5 and 10/7 just, including the fifth, which gives a tuning extending [[Carlos Gamma]].  


Adding 385/384 or 1375/1372 to the list of commas allows for an extension to the [[11-limit]], where (7/5)<sup>3</sup> equates to 11/4. This may be described as {{multival|40 22 21 -3 …}} or 68&amp;103, and 171 can still be used as a tuning, with [[val]] {{val| 171 271 397 480 591 }}.
Adding 385/384 or 1375/1372 to the list of commas allows for an extension to the [[11-limit]], where (7/5)<sup>3</sup> equates to 11/4. This may be described as {{multival| 40 22 21 -3 … }} or 68 &amp; 103, and 171 can still be used as a tuning, with [[val]] {{val| 171 271 397 480 591 }}.


[[Gene Ward Smith]] once described [https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_6001.html neptune as an analog of miracle].  
[[Gene Ward Smith]] once described [https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_6001.html neptune as an analog of miracle].  


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 48828125/48771072
[[Comma list]]: 2401/2400, 48828125/48771072


[[Mapping]]: [{{val|1 21 13 13}}, {{val|0 -40 -22 -21}}]
{{Mapping|legend=1| 1 21 13 13 | 0 -40 -22 -21 }}


Mapping generators: 2, ~7/5
: mapping generators: 2, ~7/5


{{Multival|legend=1| 40 22 21 -58 -79 -13 }}
{{Multival|legend=1| 40 22 21 -58 -79 -13 }}


[[POTE generator]]: ~7/5 = 582.452
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/5 = 582.452


{{Optimal ET sequence|legend=1| 35, 68, 103, 171, 1094, 1265, 1436, 1607, 1778 }}
{{Optimal ET sequence|legend=1| 35, 68, 103, 171, 1094, 1265, 1436, 1607, 1778 }}
Line 150: Line 152:
Comma list: 385/384, 1375/1372, 78408/78125
Comma list: 385/384, 1375/1372, 78408/78125


Mapping: [{{val|1 21 13 13 2}}, {{val|0 -40 -22 -21 3}}]
Mapping: {{mapping| 1 21 13 13 2 | 0 -40 -22 -21 3 }}


POTE generator: ~7/5 = 582.475
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 582.475


{{Optimal ET sequence|legend=1| 35, 68, 103, 171e, 274e, 445ee }}
{{Optimal ET sequence|legend=1| 35, 68, 103, 171e, 274e, 445ee }}
Line 163: Line 165:
Comma list: 385/384, 625/624, 1188/1183, 1375/1372
Comma list: 385/384, 625/624, 1188/1183, 1375/1372


Mapping: [{{val|1 21 13 13 2 27}}, {{val|0 -40 -22 -21 3 -48}}]
Mapping: {{mapping| 1 21 13 13 2 27 | 0 -40 -22 -21 3 -48 }}


POTE generator: ~7/5 = 582.480
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 582.480


{{Optimal ET sequence|legend=1| 35f, 68, 103, 171e, 274e }}
{{Optimal ET sequence|legend=1| 35f, 68, 103, 171e, 274e }}
Line 176: Line 178:
Comma list: 385/384, 561/560, 625/624, 715/714, 1188/1183
Comma list: 385/384, 561/560, 625/624, 715/714, 1188/1183


Mapping: [{{val|1 21 13 13 2 27 7}}, {{val|0 -40 -22 -21 3 -48 -6}}]
Mapping: {{mapping| 1 21 13 13 2 27 7 | 0 -40 -22 -21 3 -48 -6 }}


POTE generator: ~7/5 = 582.475
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 582.475


{{Optimal ET sequence|legend=1| 35f, 68, 103, 171e, 274e, 445ee }}
{{Optimal ET sequence|legend=1| 35f, 68, 103, 171e, 274e, 445ee }}
Line 189: Line 191:
Comma list: 243/242, 441/440, 9765625/9732096
Comma list: 243/242, 441/440, 9765625/9732096


Mapping: [{{val|1 21 13 13 52}}, {{val|0 -40 -22 -21 -100}}]
Mapping: {{mapping| 1 21 13 13 52 | 0 -40 -22 -21 -100 }}


POTE generator: ~7/5 = 582.478
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 582.478


{{Optimal ET sequence|legend=1| 68e, 103, 171, 274, 719be, 993bcde, 1267bbcde }}
{{Optimal ET sequence|legend=1| 68e, 103, 171, 274, 719be, 993bcde, 1267bbcde }}
Line 202: Line 204:
Comma list: 243/242, 441/440, 625/624, 2200/2197
Comma list: 243/242, 441/440, 625/624, 2200/2197


Mapping: [{{val|1 21 13 13 52 27}}, {{val|0 -40 -22 -21 -100 -48}}]
Mapping: {{mapping| 1 21 13 13 52 27 | 0 -40 -22 -21 -100 -48 }}


POTE generator: ~7/5 = 582.477
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 582.477


{{Optimal ET sequence|legend=1| 68e, 103, 171, 274, 719be, 993bcde }}
{{Optimal ET sequence|legend=1| 68e, 103, 171, 274, 719be, 993bcde }}
Line 215: Line 217:
Comma list: 243/242, 375/374, 441/440, 625/624, 2200/2197
Comma list: 243/242, 375/374, 441/440, 625/624, 2200/2197


Mapping: [{{val|1 21 13 13 52 27 7}}, {{val|0 -40 -22 -21 -100 -48 -6}}]
Mapping: {{mapping| 1 21 13 13 52 27 7 | 0 -40 -22 -21 -100 -48 -6 }}


POTE generator: ~7/5 = 582.475
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 582.475


{{Optimal ET sequence|legend=1| 68e, 103, 171, 274, 445e, 719be, 1164bcdeef }}
{{Optimal ET sequence|legend=1| 68e, 103, 171, 274, 445e, 719be, 1164bcdeef }}
Line 228: Line 230:
Comma list: 2401/2400, 9801/9800, 9453125/9437184
Comma list: 2401/2400, 9801/9800, 9453125/9437184


Mapping: [{{val|2 2 4 5 8}}, {{val|0 40 22 21 -37}}]
Mapping: {{mapping| 2 2 4 5 8 | 0 40 22 21 -37 }}


Mapping generators: ~99/70, ~99/98
: mapping generators: ~99/70, ~99/98


POTE generator: ~99/98 = 17.545
Optimal tuning (POTE): ~2 = 1\1, ~99/98 = 17.545


{{Optimal ET sequence|legend=1| 68, 206b, 274, 342 }}
{{Optimal ET sequence|legend=1| 68, 206b, 274, 342 }}
Line 240: Line 242:
[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Gammic family| ]] <!-- main article -->
[[Category:Gammic family| ]] <!-- main article -->
[[Category:Gammic| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]