Generator ranges of MOS: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
Below are ranges of generators for various L-s patterns of [[MOS scale]]s, with the number of steps in the scale from 2 to 29. The ranges are given in fractions of the interval of equivalence, which is normally an octave. The tables give the range of | Below are ranges of generators for various L-s patterns of [[MOS scale]]s, with the number of steps in the scale from 2 to 29. The ranges are given in fractions of the interval of equivalence, which is normally an octave. The tables give the range of bright generators in the second column, normalized so that the lower end of the range is where L/s = 1 (Nedo). The third column gives the boundaries of propriety, maximum expressiveness and diatonicity (i.e. best, better and good behavior). Finally, the fourth column gives the formula for the size of the chroma. We have normalized to the formula for the step size where the leading term is positive. | ||
= 2, 3, and 4-tone = | == 2, 3, and 4-tone == | ||
'''Note 1: These sets are given for the sake of completeness as they are not really scales''' | '''Note 1: These sets are given for the sake of completeness as they are not really scales''' | ||
Line 13: | Line 13: | ||
! | Large step-Small step | ! | Large step-Small step | ||
|- | |- | ||
| |[[1L 1s|''1L 1s'']] | | | [[1L 1s|''1L 1s'']] | ||
| | ''1\2 < g < 1'' | | | ''1\2 < g < 1'' | ||
| | ''g = 2\3, 3\4, 4\5-5\6'' | | | ''g = 2\3, 3\4, 4\5-5\6'' | ||
| | ''g-(1-g) = 2g-1'' | | | ''g-(1-g) = 2g-1'' | ||
|- | |- | ||
| |[[1L 2s]] | | | [[1L 2s]] | ||
| | 2\3 < g < 1 | | | 2\3 < g < 1 | ||
| | g = 3\4, 4\5, 5\6-6\7 | | | g = 3\4, 4\5, 5\6-6\7 | ||
| | 2g-1-(1-g) = 3g-2 | | | 2g-1-(1-g) = 3g-2 | ||
|- | |- | ||
| |[[2L 1s|''2L 1s'']] | | | [[2L 1s|''2L 1s'']] | ||
| | ''1\3 < g < 1\2'' | | | ''1\3 < g < 1\2'' | ||
| | ''g = 2\5, 3\7, 4\9-5\11'' | | | ''g = 2\5, 3\7, 4\9-5\11'' | ||
| | ''g-(1-2g)= 3g-1'' | | | ''g-(1-2g)= 3g-1'' | ||
|- | |- | ||
| |[[1L 3s]] | | | [[1L 3s]] | ||
| | 3\4 < g < 1 | | | 3\4 < g < 1 | ||
| | g = 4\5, 5\6, 6\7-7\8 | | | g = 4\5, 5\6, 6\7-7\8 | ||
| | 3g-2-(1-g) = 4g-3 | | | 3g-2-(1-g) = 4g-3 | ||
|- | |- | ||
| |[[2L 2s|''2L 2s'']] ''= 1L 1s (2)'' | | | [[2L 2s|''2L 2s'']] ''= 1L 1s (2)'' | ||
| | ''1\4 < g < 1\2'' | | | ''1\4 < g < 1\2'' | ||
| | ''g = 2\6, 3\8, 4\10-5\12'' | | | ''g = 2\6, 3\8, 4\10-5\12'' | ||
| | ''g-(1\2-g) = 2g-1\2'' | | | ''g-(1\2-g) = 2g-1\2'' | ||
|- | |- | ||
| |[[3L 1s|''3L 1s'']] | | | [[3L 1s|''3L 1s'']] | ||
| | ''1\4 < g < 1\3'' | | | ''1\4 < g < 1\3'' | ||
| | ''g = 2\7, 3\10, 4\13-5\16'' | | | ''g = 2\7, 3\10, 4\13-5\16'' | ||
Line 44: | Line 44: | ||
|} | |} | ||
= 5-tone = | == 5-tone == | ||
'''Note: italicized generators from here below generate scales which are weakly tonal''' | '''Note: italicized generators from here below generate scales which are weakly tonal''' | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 74: | Line 74: | ||
|} | |} | ||
= 6-tone = | == 6-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 108: | Line 108: | ||
|} | |} | ||
= 7-tone = | == 7-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 147: | Line 147: | ||
|} | |} | ||
= 8-tone = | == 8-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 191: | Line 191: | ||
|} | |} | ||
= 9-tone = | == 9-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 240: | Line 240: | ||
|} | |} | ||
= 10-tone = | == 10-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 294: | Line 294: | ||
|} | |} | ||
= 11-tone = | == 11-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 353: | Line 353: | ||
|} | |} | ||
= 12-tone = | == 12-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 417: | Line 417: | ||
|} | |} | ||
= 13-tone = | == 13-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 442: | Line 442: | ||
| | [[4L 9s]] | | | [[4L 9s]] | ||
| | 3\13 < g < 1\4 | | | 3\13 < g < 1\4 | ||
| | g = 4\17, 5\21, 6\25-7\ | | | g = 4\17, 5\21, 6\25-7\29 | ||
| | 9g-2-(1-4g) = 13g-3 | | | 9g-2-(1-4g) = 13g-3 | ||
|- | |- | ||
Line 486: | Line 486: | ||
|} | |} | ||
= 14-tone = | == 14-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 560: | Line 560: | ||
|} | |} | ||
= 15-tone = | == 15-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 639: | Line 639: | ||
|} | |} | ||
= 16-tone = | == 16-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 723: | Line 723: | ||
|} | |} | ||
= 17-tone = | == 17-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 812: | Line 812: | ||
|} | |} | ||
= 18-tone = | == 18-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 836: | Line 836: | ||
|- | |- | ||
| | [[4L 14s]] | | | [[4L 14s]] | ||
| | | | | 4\18 < g < 1\4 | ||
| | | | | g = ''5\22'', 6\26, 7\30-8\34 | ||
| | 7g-3\2-(1\2-2g) = 9g-2 | | | 7g-3\2-(1\2-2g) = 9g-2 | ||
|- | |- | ||
Line 872: | Line 872: | ||
| | [[11L 7s]] | | | [[11L 7s]] | ||
| | 13\18 < g < 8\11 | | | 13\18 < g < 8\11 | ||
| | g = 21\29, 29\40, 37\51- | | | g = 21\29, 29\40, 37\51-45\62 | ||
| | 7g-5-(8-11g) = 18g-13 | | | 7g-5-(8-11g) = 18g-13 | ||
|- | |- | ||
Line 906: | Line 906: | ||
|} | |} | ||
= 19-tone = | == 19-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 912: | Line 912: | ||
! | Generator range | ! | Generator range | ||
! | Boundaries of best, better, good behavior | ! | Boundaries of best, better, good behavior | ||
! |Large step-Small step | ! | Large step-Small step | ||
|- | |- | ||
| | [[1L 18s]] | | | [[1L 18s]] | ||
| | 18\19 < g < 1 | | | 18\19 < g < 1 | ||
| | g = ''19\20, 20\21, 21\22-22\23'' | | | g = ''19\20, 20\21, 21\22-22\23'' | ||
| |18g-17-(1-g) = 19g-18 | | | 18g-17-(1-g) = 19g-18 | ||
|- | |- | ||
| | [[2L 17s]] | | | [[2L 17s]] | ||
| | 9\19 < g < 1\2 | | | 9\19 < g < 1\2 | ||
| | g = ''10\21'', ''11\23'', 12\25-13\27 | | | g = ''10\21'', ''11\23'', 12\25-13\27 | ||
| |17g-8-(1-2g) = 19g-9 | | | 17g-8-(1-2g) = 19g-9 | ||
|- | |- | ||
| | [[3L 16s]] | | | [[3L 16s]] | ||
| | 6\19 < g < 1\3 | | | 6\19 < g < 1\3 | ||
| | g = ''7\22'', 8\25, 9\28-10\31 | | | g = ''7\22'', 8\25, 9\28-10\31 | ||
| |16g-5-(1-3g) = 19g-6 | | | 16g-5-(1-3g) = 19g-6 | ||
|- | |- | ||
| | [[4L 15s]] | | | [[4L 15s]] | ||
| | 14\19 < g < 3\4 | | | 14\19 < g < 3\4 | ||
| | g = ''17\23'', 20\27, 23\31-27\35 | | | g = ''17\23'', 20\27, 23\31-27\35 | ||
| |15g-11-(3-4g) = 19g-14 | | | 15g-11-(3-4g) = 19g-14 | ||
|- | |- | ||
| | [[5L 14s]] | | | [[5L 14s]] | ||
| | 15\19 < g < 4\5 | | | 15\19 < g < 4\5 | ||
| | g = 19\24, 23\29, 27\34-31\39 | | | g = 19\24, 23\29, 27\34-31\39 | ||
| |14g-11-(4-5g) = 19g-15 | | | 14g-11-(4-5g) = 19g-15 | ||
|- | |- | ||
| | [[6L 13s]] | | | [[6L 13s]] | ||
| | 3\19 < g < 1\6 | | | 3\19 < g < 1\6 | ||
| | g = 4\25, 5\31, 6\37-7\43 | | | g = 4\25, 5\31, 6\37-7\43 | ||
| |13g-2-(1-6g) = 19g-3 | | | 13g-2-(1-6g) = 19g-3 | ||
|- | |- | ||
| | [[7L 12s]] | | | [[7L 12s]] | ||
| | 8\19 < g < 3\7 | | | 8\19 < g < 3\7 | ||
| | g = 11\26, 14\33, 17\40-20\47 | | | g = 11\26, 14\33, 17\40-20\47 | ||
| |12g-5-(3-7g) = 19g-8 | | | 12g-5-(3-7g) = 19g-8 | ||
|- | |- | ||
| | [[8L 11s]] | | | [[8L 11s]] | ||
| | 7\19 < g < 3\8 | | | 7\19 < g < 3\8 | ||
| | g = 10\27, 13\35, 16\43-19\51 | | | g = 10\27, 13\35, 16\43-19\51 | ||
| |11g-4-(3-8g) = 19g-7 | | | 11g-4-(3-8g) = 19g-7 | ||
|- | |- | ||
| | [[9L 10s]] | | | [[9L 10s]] | ||
| | 2\19 < g < 1\9 | | | 2\19 < g < 1\9 | ||
| | g = 3\28, 4\37, 5\46-6\55 | | | g = 3\28, 4\37, 5\46-6\55 | ||
| |10g-1-(1-9g) = 19g-2 | | | 10g-1-(1-9g) = 19g-2 | ||
|- | |- | ||
| | [[10L 9s]] | | | [[10L 9s]] | ||
| | 17\19 < g < 9\10 | | | 17\19 < g < 9\10 | ||
| | g = 26\29, 35\39, 44\49-53\59 | | | g = 26\29, 35\39, 44\49-53\59 | ||
| |9g-8-(9-10g) = 19g-17 | | | 9g-8-(9-10g) = 19g-17 | ||
|- | |- | ||
| | [[11L 8s]] | | | [[11L 8s]] | ||
| | 12\19 < g < 7\11 | | | 12\19 < g < 7\11 | ||
| | g = 19\30, 26\41, 33\52-40\63 | | | g = 19\30, 26\41, 33\52-40\63 | ||
| |8g-5-(7-11g) = 19g-12 | | | 8g-5-(7-11g) = 19g-12 | ||
|- | |- | ||
| | [[12L 7s]] | | | [[12L 7s]] | ||
| | 11\19 < g < 7\12 | | | 11\19 < g < 7\12 | ||
| | g = 18\31, 25\43, 32\55-39\67 | | | g = 18\31, 25\43, 32\55-39\67 | ||
| |7g-4-(7-12g) = 19g-11 | | | 7g-4-(7-12g) = 19g-11 | ||
|- | |- | ||
| | [[13L 6s]] | | | [[13L 6s]] | ||
| | 16\19 < g < 11\13 | | | 16\19 < g < 11\13 | ||
| | g = 27\32, 38\45, 49\58-60\71 | | | g = 27\32, 38\45, 49\58-60\71 | ||
| |6g-5-(11-13g) = 19g-16 | | | 6g-5-(11-13g) = 19g-16 | ||
|- | |- | ||
| | [[14L 5s]] | | | [[14L 5s]] | ||
| | 4\19 < g < 3\14 | | | 4\19 < g < 3\14 | ||
| | g = 7\33, 10\47, 13\61-16\75 | | | g = 7\33, 10\47, 13\61-16\75 | ||
| |5g-1-(3-14g) = 19g-4 | | | 5g-1-(3-14g) = 19g-4 | ||
|- | |- | ||
| | [[15L 4s]] | | | [[15L 4s]] | ||
| | 5\19 < g < 4\15 | | | 5\19 < g < 4\15 | ||
| | g = 9\34, 13\49, 17\64-21\79 | | | g = 9\34, 13\49, 17\64-21\79 | ||
| |4g-1-(4-15g) = 19g-5 | | | 4g-1-(4-15g) = 19g-5 | ||
|- | |- | ||
| | [[16L 3s]] | | | [[16L 3s]] | ||
| | 13\19 < g < 11\16 | | | 13\19 < g < 11\16 | ||
| | g = 24\35, 35\51, 46\67-57\83 | | | g = 24\35, 35\51, 46\67-57\83 | ||
| |3g-2-(11-16g) = 19g-13 | | | 3g-2-(11-16g) = 19g-13 | ||
|- | |- | ||
| | [[17L 2s]] | | | [[17L 2s]] | ||
| | 10\19 < g < 9\17 | | | 10\19 < g < 9\17 | ||
| | g = 19\36, 28\53, 37\70-46\87 | | | g = 19\36, 28\53, 37\70-46\87 | ||
| |2g-1-(9-17g) = 19g-10 | | | 2g-1-(9-17g) = 19g-10 | ||
|- | |- | ||
| | [[18L 1s|''18L 1s'']] | | | [[18L 1s|''18L 1s'']] | ||
| | ''1\19 < g < 1\18'' | | | ''1\19 < g < 1\18'' | ||
| | ''g = 2\37, 3\55, 4\73-5\91'' | | | ''g = 2\37, 3\55, 4\73-5\91'' | ||
| |''g-(1-18g) = 19g-1'' | | | ''g-(1-18g) = 19g-1'' | ||
|} | |} | ||
= 20-tone = | == 20-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 1,015: | Line 1,015: | ||
| | [[1L 19s]] | | | [[1L 19s]] | ||
| | 19\20 < g < 1 | | | 19\20 < g < 1 | ||
| | '' | | | g = ''20\21, 21\22, 22\23-23\24'' | ||
| | 19g-18-(1-g) = 20g-19 | | | 19g-18-(1-g) = 20g-19 | ||
|- | |- | ||
Line 1,080: | Line 1,080: | ||
| | [[14L 6s]] | | | [[14L 6s]] | ||
| | 7\20 < g < 5\14 | | | 7\20 < g < 5\14 | ||
| | g = 12\34, 17\48, 22\62- | | | g = 12\34, 17\48, 22\62-27\76 | ||
| | 3g-1-(5\2-7g) = 10g-7\2 | | | 3g-1-(5\2-7g) = 10g-7\2 | ||
|- | |- | ||
Line 1,109: | Line 1,109: | ||
|} | |} | ||
= 21-tone = | == 21-tone == | ||
'''Note: bolded generators from here below generate scales which are well temperaments''' | '''Note: bolded generators from here below generate scales which are well temperaments''' | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 1,118: | Line 1,118: | ||
! | Large step-Small step | ! | Large step-Small step | ||
|- | |- | ||
| |[[1L 20s]] | | | [[1L 20s]] | ||
| | 20\21 < g < 1 | | | 20\21 < g < 1 | ||
| |'' | | | g = ''21\22, 22\23, 23\24-24\25'' | ||
| | 20g-19-(1-g) = 21g-20 | | | 20g-19-(1-g) = 21g-20 | ||
|- | |- | ||
| |[[2L 19s]] | | | [[2L 19s]] | ||
| | 10\21 < g < 1\2 | | | 10\21 < g < 1\2 | ||
| | g = ''11\23, 12\25'', 13\27-13\29 | | | g = ''11\23, 12\25'', 13\27-13\29 | ||
| | 19g-9-(1-2g) = 21g-10 | | | 19g-9-(1-2g) = 21g-10 | ||
|- | |- | ||
| |[[3L 18s]] | | | [[3L 18s]] | ||
| | 6\21 < g < 1\3 | | | 6\21 < g < 1\3 | ||
| | g = ''7\24'', 8\27, 9\30-10\33 | | | g = ''7\24'', 8\27, 9\30-10\33 | ||
| | 6g-5\3-(1\3-g) = 7g-2 | | | 6g-5\3-(1\3-g) = 7g-2 | ||
|- | |- | ||
| |[[4L 17s]] | | | [[4L 17s]] | ||
| | 5\21 < g < 1\4 | | | 5\21 < g < 1\4 | ||
| | g = ''6\25'', 7\29, 8\33-9\37 | | | g = ''6\25'', 7\29, 8\33-9\37 | ||
| | 17g-4-(1-4g) = 21g-5 | | | 17g-4-(1-4g) = 21g-5 | ||
|- | |- | ||
| |[[5L 16s]] | | | [[5L 16s]] | ||
| | 4\21 < g < 1\5 | | | 4\21 < g < 1\5 | ||
| | g = ''5\26'', 6\31, 7\36-8\41 | | | g = ''5\26'', 6\31, 7\36-8\41 | ||
| | 16g-3-(1-5g) = 21g-4 | | | 16g-3-(1-5g) = 21g-4 | ||
|- | |- | ||
| |[[6L 15s]] | | | [[6L 15s]] | ||
| | 3\21 < g < 1\6 | | | 3\21 < g < 1\6 | ||
| | g = 4\27, 5\33, 6\39-7\45 | | | g = 4\27, 5\33, 6\39-7\45 | ||
| | 5g-2\3-(1\3-2g) = 7g-1 | | | 5g-2\3-(1\3-2g) = 7g-1 | ||
|- | |- | ||
| |[[7L 14s]] | | | [[7L 14s]] | ||
| | 2\21 < g < 1\7 | | | 2\21 < g < 1\7 | ||
| | g = 3\28, 4\35, 5\42-6\49 | | | g = 3\28, 4\35, 5\42-6\49 | ||
| | 2g-1\7-(1\7-g) = 3g-2\7 | | | 2g-1\7-(1\7-g) = 3g-2\7 | ||
|- | |- | ||
| |[[8L 13s]] | | | [[8L 13s]] | ||
| | 13\21 < g < 5\8 | | | 13\21 < g < 5\8 | ||
| | g = 18\29, 23\37, 28\45-33\53 | | | g = 18\29, 23\37, 28\45-33\53 | ||
| | 13g-8-(5-8g) = 21g-13 | | | 13g-8-(5-8g) = 21g-13 | ||
|- | |- | ||
| |[[9L 12s]] | | | [[9L 12s]] | ||
| | 2\21 < g < 1\9 | | | 2\21 < g < 1\9 | ||
| | g = 3\30, 4\39, 5\48-6\57 | | | g = 3\30, 4\39, 5\48-6\57 | ||
| | 4g-1\3-(1\3-3g) = 7g-2\3 | | | 4g-1\3-(1\3-3g) = 7g-2\3 | ||
|- | |- | ||
| |[[10L 11s]] | | | [[10L 11s]] | ||
| | 2\21 < g < 1\10 | | | 2\21 < g < 1\10 | ||
| | g = 3\31, 4\41, 5\51-6\61 | | | g = 3\31, 4\41, 5\51-6\61 | ||
| | 11g-1-(1-10g) = 21g-2 | | | 11g-1-(1-10g) = 21g-2 | ||
|- | |- | ||
| |[[11L 10s]] | | | [[11L 10s]] | ||
| | 19\21 < g < 10\11 | | | 19\21 < g < 10\11 | ||
| | g = 29\32, 39\43, 49\54-59\65 | | | g = 29\32, 39\43, 49\54-59\65 | ||
| | 10g-9-(10-11g) = 21g-19 | | | 10g-9-(10-11g) = 21g-19 | ||
|- | |- | ||
| |[[12L 9s]] | | | [[12L 9s]] | ||
| | 5\21 < g < 3\12 | | | 5\21 < g < 3\12 | ||
| | g = 8\33, 11\45, 14\57-17\69 | | | g = 8\33, 11\45, 14\57-17\69 | ||
| | 3g-2\3-(1-4g) = 7g-1\3 | | | 3g-2\3-(1-4g) = 7g-1\3 | ||
|- | |- | ||
| |[[13L 8s]] | | | [[13L 8s]] | ||
| | 8\21 < g < 5\13 | | | 8\21 < g < 5\13 | ||
| | g = 13\34, 18\47, 23\60-28\73 | | | g = 13\34, 18\47, 23\60-28\73 | ||
| | 8g-3-(5-13g) = 21g-8 | | | 8g-3-(5-13g) = 21g-8 | ||
|- | |- | ||
| |[[14L 7s|''14L 7s'']] ''= 2L 1s (7)'' | | | [[14L 7s|''14L 7s'']] ''= 2L 1s (7)'' | ||
| | ''1\21 < g < 1\14'' | | | ''1\21 < g < 1\14'' | ||
| | ''g = 2\35, 3\49, 4\63-5\77'' | | | ''g = 2\35, 3\49, 4\63-5\77'' | ||
| | ''g-(1\7-2g) = 3g-1\7'' | | | ''g-(1\7-2g) = 3g-1\7'' | ||
|- | |- | ||
| |[[15L 6s]] | | | [[15L 6s]] | ||
| | 4\21 < g < 3\15 | | | 4\21 < g < 3\15 | ||
| | g = 7\36, 10\51, 13\66-16\81 | | | g = 7\36, 10\51, 13\66-16\81 | ||
| | 2g-1\3-(1-5g) = 7g-4\3 | | | 2g-1\3-(1-5g) = 7g-4\3 | ||
|- | |- | ||
| |[[16L 5s]] | | | [[16L 5s]] | ||
| | 17\21 < g < 13\16 | | | 17\21 < g < 13\16 | ||
| | g = 30\37, 43\53, 56\69-69\85 | | | g = 30\37, 43\53, 56\69-69\85 | ||
| | 5g-4-(13-16g) = 21g-17 | | | 5g-4-(13-16g) = 21g-17 | ||
|- | |- | ||
| |[[17L 4s]] | | | [[17L 4s]] | ||
| | 16\21 < g < 13\17 | | | 16\21 < g < 13\17 | ||
| | g = 29\38, 42\55, 55\72-68\89 | | | g = 29\38, 42\55, 55\72-68\89 | ||
| | 4g-3-(13-17g) = 21g-16 | | | 4g-3-(13-17g) = 21g-16 | ||
|- | |- | ||
| |[[18L 3s|''18L 3s'']] ''= 6L 1s (3)'' | | | [[18L 3s|''18L 3s'']] ''= 6L 1s (3)'' | ||
| | ''1\21 < g < 1\18'' | | | ''1\21 < g < 1\18'' | ||
| | ''g = 2\39, 3\57, 4\75-5\93'' | | | ''g = 2\39, 3\57, 4\75-5\93'' | ||
| | ''g-(1\3-6g) = 7g-1\3'' | | | ''g-(1\3-6g) = 7g-1\3'' | ||
|- | |- | ||
| |[[19L 2s]] | | | [[19L 2s]] | ||
| | 11\21 < g < 10\19 | | | 11\21 < g < 10\19 | ||
| | g = '''21\40''', 31\59, 41\78-51\97 | | | g = '''21\40''', 31\59, 41\78-51\97 | ||
| | 2g-1-(10-19g) = 21g-11 | | | 2g-1-(10-19g) = 21g-11 | ||
|- | |- | ||
| |[[20L 1s|''20L 1s'']] | | | [[20L 1s|''20L 1s'']] | ||
| | ''1\21 < g < 1\20'' | | | ''1\21 < g < 1\20'' | ||
| | ''g = '''2\41''', 3\61, 4\81-5\101'' | | | ''g = '''2\41''', 3\61, 4\81-5\101'' | ||
Line 1,219: | Line 1,219: | ||
|} | |} | ||
= 22-tone = | == 22-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 1,225: | Line 1,225: | ||
! | Generator range | ! | Generator range | ||
! | Boundaries of best, better, good behavior | ! | Boundaries of best, better, good behavior | ||
! |Large step-Small step | ! | Large step-Small step | ||
|- | |- | ||
| | [[1L 21s]] | | | [[1L 21s]] | ||
| | 21\22 < g < 1 | | | 21\22 < g < 1 | ||
| | '' | | | g = ''22\23, 23\24, 24/25-25\26'' | ||
| |21g-20-(1-g) = 22g-21 | | | 21g-20-(1-g) = 22g-21 | ||
|- | |- | ||
| | [[2L 20s]] | | | [[2L 20s]] | ||
| | 10\22 < g < 1\2 | | | 10\22 < g < 1\2 | ||
| | g = ''11\24,'' ''12\26'', 13\28-14\30 | | | g = ''11\24,'' ''12\26'', 13\28-14\30 | ||
| |10g-9\2-(1\2-g) = 11g-5 | | | 10g-9\2-(1\2-g) = 11g-5 | ||
|- | |- | ||
| | [[3L 19s]] | | | [[3L 19s]] | ||
| | 7\22 < g < 1\3 | | | 7\22 < g < 1\3 | ||
| | g = ''8\25'', 9\28, 10\31-11\34 | | | g = ''8\25'', 9\28, 10\31-11\34 | ||
| |19g-6-(1-3g) = 22g-7 | | | 19g-6-(1-3g) = 22g-7 | ||
|- | |- | ||
| | [[4L 18s]] | | | [[4L 18s]] | ||
| | 5\22 < g < 1\4 | | | 5\22 < g < 1\4 | ||
| | g = ''6\26'', 7\30, 8\34-9\38 | | | g = ''6\26'', 7\30, 8\34-9\38 | ||
| |9g-2-(1\2-2g) = 11g-5\2 | | | 9g-2-(1\2-2g) = 11g-5\2 | ||
|- | |- | ||
| | [[5L 17s]] | | | [[5L 17s]] | ||
| | 13\22 < g < 3\5 | | | 13\22 < g < 3\5 | ||
| | g = ''16\27'', 19\32, 22\37-25\42 | | | g = ''16\27'', 19\32, 22\37-25\42 | ||
| |17g-10-(3-5g) = 22g-13 | | | 17g-10-(3-5g) = 22g-13 | ||
|- | |- | ||
| | [[6L 16s]] | | | [[6L 16s]] | ||
| | 7\22 < g < 2\6 | | | 7\22 < g < 2\6 | ||
| | g = 9\28, 11\34, 13\40-15\ | | | g = 9\28, 11\34, 13\40-15\46 | ||
| |8g-5\2-(1-3g) = 11g-7\2 | | | 8g-5\2-(1-3g) = 11g-7\2 | ||
|- | |- | ||
| | [[7L 15s]] | | | [[7L 15s]] | ||
| | 3\22 < g < 1\7 | | | 3\22 < g < 1\7 | ||
| | g = 4\29, 5\36, 6\43-7\50 | | | g = 4\29, 5\36, 6\43-7\50 | ||
| |15g-2-(1-7g) = 22g-3 | | | 15g-2-(1-7g) = 22g-3 | ||
|- | |- | ||
| | [[8L 14s]] | | | [[8L 14s]] | ||
| | 8\22 < g < 3\8 | | | 8\22 < g < 3\8 | ||
| | g = 11\30, 14\38, 17\46-20\54 | | | g = 11\30, 14\38, 17\46-20\54 | ||
| |7g-5\2-(3\2-4g) = 11g-4 | | | 7g-5\2-(3\2-4g) = 11g-4 | ||
|- | |- | ||
| | [[9L 13s]] | | | [[9L 13s]] | ||
| | 17\22 < g < 7\9 | | | 17\22 < g < 7\9 | ||
| | g = 24\31, 31\40, 38\49-45\58 | | | g = 24\31, 31\40, 38\49-45\58 | ||
| |13g-10-(7-9g) = 22g-17 | | | 13g-10-(7-9g) = 22g-17 | ||
|- | |- | ||
| | [[10L 12s]] | | | [[10L 12s]] | ||
| | 2\22 < g < 1\10 | | | 2\22 < g < 1\10 | ||
| | g = 3\32, 4\42, 5\52-6\62 | | | g = 3\32, 4\42, 5\52-6\62 | ||
| |6g-1\2-(1\2-5g) = 11g-1 | | | 6g-1\2-(1\2-5g) = 11g-1 | ||
|- | |- | ||
| | ''[[11L 11s]] = 1L 1s (11)'' | | | ''[[11L 11s]] = 1L 1s (11)'' | ||
| | ''1\22 < g < 1\11'' | | | ''1\22 < g < 1\11'' | ||
| | ''g = 2\33, 3\44, 4\55-5\66'' | | | ''g = 2\33, 3\44, 4\55-5\66'' | ||
| |''g-(1\11-g) = 2g-1\11'' | | | ''g-(1\11-g) = 2g-1\11'' | ||
|- | |- | ||
| | [[12L 10s]] | | | [[12L 10s]] | ||
| | 9\22 < g < 5\12 | | | 9\22 < g < 5\12 | ||
| | g = 14\34, 19\46, 24\58-29\70 | | | g = 14\34, 19\46, 24\58-29\70 | ||
| |5g-2-(5\2-6g) = 11g-7\2 | | | 5g-2-(5\2-6g) = 11g-7\2 | ||
|- | |- | ||
| | [[13L 9s]] | | | [[13L 9s]] | ||
| | 5\22 < g < 3\13 | | | 5\22 < g < 3\13 | ||
| | g = 8\35, 11\48, 14\61-17\74 | | | g = 8\35, 11\48, 14\61-17\74 | ||
| |9g-2-(3-13g) = 22g-5 | | | 9g-2-(3-13g) = 22g-5 | ||
|- | |- | ||
| | [[14L 8s]] | | | [[14L 8s]] | ||
| | 3\22 < g < 2\14 | | | 3\22 < g < 2\14 | ||
| | g = 5\36, 7\50, 9\64-11\78 | | | g = 5\36, 7\50, 9\64-11\78 | ||
| |4g-1\2-(1-7g) = 11g-3\2 | | | 4g-1\2-(1-7g) = 11g-3\2 | ||
|- | |- | ||
| | [[15L 7s]] | | | [[15L 7s]] | ||
| | 19\22 < g < 13\15 | | | 19\22 < g < 13\15 | ||
| | g = 32\37, 45\52, 58\67-71\82 | | | g = 32\37, 45\52, 58\67-71\82 | ||
| |7g-6-(13-15g) = 22g-13 | | | 7g-6-(13-15g) = 22g-13 | ||
|- | |- | ||
| | [[16L 6s]] | | | [[16L 6s]] | ||
| | 4\22 < g < 3\16 | | | 4\22 < g < 3\16 | ||
| | g = 7\38, 10\54, 13\70-16\86 | | | g = 7\38, 10\54, 13\70-16\86 | ||
| |3g-1\2-(3\2-8g) = 11g-2 | | | 3g-1\2-(3\2-8g) = 11g-2 | ||
|- | |- | ||
| | [[17L 5s]] | | | [[17L 5s]] | ||
| | 9\22 < g < 7\17 | | | 9\22 < g < 7\17 | ||
| | g = 16\39, 23\56, 30\73-37\90 | | | g = 16\39, 23\56, 30\73-37\90 | ||
| |5g-2-(7-17g) = 22g-9 | | | 5g-2-(7-17g) = 22g-9 | ||
|- | |- | ||
| | [[18L 4s]] | | | [[18L 4s]] | ||
| | 6\22 < g < 5\18 | | | 6\22 < g < 5\18 | ||
| | g = '''11\40''', 16\58, 21\76-26\94 | | | g = '''11\40''', 16\58, 21\76-26\94 | ||
| |2g-1\2-(5\2-9g) = 11g-3 | | | 2g-1\2-(5\2-9g) = 11g-3 | ||
|- | |- | ||
| | [[19L 3s]] | | | [[19L 3s]] | ||
| | 15\22 < g < 13\19 | | | 15\22 < g < 13\19 | ||
| | g = '''28\41''', 41\60, 54\79-67\98 | | | g = '''28\41''', 41\60, 54\79-67\98 | ||
| |3g-2-(13-19g) = 22g-15 | | | 3g-2-(13-19g) = 22g-15 | ||
|- | |- | ||
| | ''[[20L 2s]] = 10L 1s (2)'' | | | ''[[20L 2s]] = 10L 1s (2)'' | ||
| | ''1\22 < g < 1\20'' | | | ''1\22 < g < 1\20'' | ||
| | ''g = '''2\42''', 3\62, 4\82-5\102'' | | | ''g = '''2\42''', 3\62, 4\82-5\102'' | ||
| |''g-(1\2-10g) = 11g-1\2'' | | | ''g-(1\2-10g) = 11g-1\2'' | ||
|- | |- | ||
| | [[21L 1s|''21L 1s'']] | | | [[21L 1s|''21L 1s'']] | ||
| | ''1\22 < g < 1\21'' | | | ''1\22 < g < 1\21'' | ||
| | ''g = '''2\43''', 3\64, 4\85-5\106'' | | | ''g = '''2\43''', 3\64, 4\85-5\106'' | ||
| |''g-(1-21g) = 22g-1'' | | | ''g-(1-21g) = 22g-1'' | ||
|} | |} | ||
= 23-tone = | == 23-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 1,343: | Line 1,343: | ||
| | [[1L 22s]] | | | [[1L 22s]] | ||
| | 22\23 < g < 1 | | | 22\23 < g < 1 | ||
| | '' | | | g = ''23\24, 24\25, 25\26-26\27'' | ||
| | 22g-21-(1-g) = 23g-22 | | | 22g-21-(1-g) = 23g-22 | ||
|- | |- | ||
Line 1,368: | Line 1,368: | ||
| | [[6L 17s]] | | | [[6L 17s]] | ||
| | 19\23 < g < 5\6 | | | 19\23 < g < 5\6 | ||
| | g = 24\29, 29\35, 34\41-39\ | | | g = 24\29, 29\35, 34\41-39\47 | ||
| | 17g-15-(1-6g) = 23g-16 | | | 17g-15-(1-6g) = 23g-16 | ||
|- | |- | ||
| | [[7L 16s]] | | | [[7L 16s]] | ||
| | 13\23 < g < 4\7 | | | 13\23 < g < 4\7 | ||
| | g = 17\30, 21\37, 25\44-29\ | | | g = 17\30, 21\37, 25\44-29\51 | ||
| | 16g-9-(4-7g) = 23g-13 | | | 16g-9-(4-7g) = 23g-13 | ||
|- | |- | ||
Line 1,398: | Line 1,398: | ||
| | [[12L 11s]] | | | [[12L 11s]] | ||
| | 21\23 < g < 11\12 | | | 21\23 < g < 11\12 | ||
| | g = 32\35, 43\47, 54\59-65\ | | | g = 32\35, 43\47, 54\59-65\71 | ||
| | 11g-10-(11-12g) = 23g-21 | | | 11g-10-(11-12g) = 23g-21 | ||
|- | |- | ||
| | [[13L 10s]] | | | [[13L 10s]] | ||
| | 7\23 < g < 4\13 | | | 7\23 < g < 4\13 | ||
| | g = 11\36, 15\49, 19\62- | | | g = 11\36, 15\49, 19\62-23\75 | ||
| | 10g-3-(4-13g) = 23g-7 | | | 10g-3-(4-13g) = 23g-7 | ||
|- | |- | ||
Line 1,433: | Line 1,433: | ||
| | [[19L 4s]] | | | [[19L 4s]] | ||
| | 6\23 < g < 5\19 | | | 6\23 < g < 5\19 | ||
| | g = '''11\42''', 16\61, 21\80- | | | g = '''11\42''', 16\61, 21\80-26\99 | ||
| | 4g-1-(5-19g) = 23g-6 | | | 4g-1-(5-19g) = 23g-6 | ||
|- | |- | ||
Line 1,452: | Line 1,452: | ||
|} | |} | ||
= 24-tone = | == 24-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 1,462: | Line 1,462: | ||
| | [[1L 23s]] | | | [[1L 23s]] | ||
| | 23\24 < g < 1 | | | 23\24 < g < 1 | ||
| | '' | | | g = ''24\25, 25\26, 26\27-27\28'' | ||
| | 23g-22-(1-g) = 24g-23 | | | 23g-22-(1-g) = 24g-23 | ||
|- | |- | ||
Line 1,576: | Line 1,576: | ||
|} | |} | ||
= 25-tone = | == 25-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 1,586: | Line 1,586: | ||
| | [[1L 24s]] | | | [[1L 24s]] | ||
| | 24\25 < g < 1 | | | 24\25 < g < 1 | ||
| | '' | | | g = ''25\26, 26\27, 27\28-28\29'' | ||
| | 24g-23-(1-g) = 25g-24 | | | 24g-23-(1-g) = 25g-24 | ||
|- | |- | ||
| | [[2L 23s]] | | | [[2L 23s]] | ||
| | 12\25 < g < 1\2 | | | 12\25 < g < 1\2 | ||
| | '' | | | g = ''13\27, 14\29, 15\31''-16\33 | ||
| | 23g-11-(1-2g) = 25g-13 | | | 23g-11-(1-2g) = 25g-13 | ||
|- | |- | ||
| | [[3L 22s]] | | | [[3L 22s]] | ||
| | 8\25 < g < 1\3 | | | 8\25 < g < 1\3 | ||
| | g = ''9\28'', ''10\31'', 11\34- | | | g = ''9\28'', ''10\31'', 11\34-12\37 | ||
| | 22g-7-(1-3g) = 25g-8 | | | 22g-7-(1-3g) = 25g-8 | ||
|- | |- | ||
Line 1,621: | Line 1,621: | ||
| | [[8L 17s]] | | | [[8L 17s]] | ||
| | 3\25 < g < 1\8 | | | 3\25 < g < 1\8 | ||
| | g = 4\33, 5\41, 6\ | | | g = 4\33, 5\41, 6\49-7\57 | ||
| | 17g-2-(1-8g) = 25g-3 | | | 17g-2-(1-8g) = 25g-3 | ||
|- | |- | ||
Line 1,686: | Line 1,686: | ||
| | [[21L 4s]] | | | [[21L 4s]] | ||
| | 19\25 < g < 16\21 | | | 19\25 < g < 16\21 | ||
| | g = '''35\46''', 51\67, | | | g = '''35\46''', 51\67, 67\88-83\109 | ||
| | 4g-3-(16-21g) = 25g-19 | | | 4g-3-(16-21g) = 25g-19 | ||
|- | |- | ||
Line 1,705: | Line 1,705: | ||
|} | |} | ||
= 26-tone = | == 26-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 1,715: | Line 1,715: | ||
| | [[1L 25s]] | | | [[1L 25s]] | ||
| | 25\26 < g < 1 | | | 25\26 < g < 1 | ||
| | '' | | | g = ''26\27, 27\28, 28\29-29\30'' | ||
| | 25g-24-(1-g) = 25g-24 | | | 25g-24-(1-g) = 25g-24 | ||
|- | |- | ||
| | [[2L 24s]] | | | [[2L 24s]] | ||
| | 12\26 < g < 1\2 | | | 12\26 < g < 1\2 | ||
| | '' | | | g = ''13\28, 14\30, 15\32''-16\34 | ||
| | 12g-11\2-(1\2-g) = 13g-6 | | | 12g-11\2-(1\2-g) = 13g-6 | ||
|- | |- | ||
Line 1,839: | Line 1,839: | ||
|} | |} | ||
= 27-tone = | == 27-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 1,849: | Line 1,849: | ||
| | [[1L 26s]] | | | [[1L 26s]] | ||
| | 26\27 < g < 1 | | | 26\27 < g < 1 | ||
| | '' | | | g = ''27\28, 28\29, 29\30-30\31'' | ||
| | 26g-25-(1-g) = 27g-26 | | | 26g-25-(1-g) = 27g-26 | ||
|- | |- | ||
| | [[2L 25s]] | | | [[2L 25s]] | ||
| | 13\27 < g < 1\2 | | | 13\27 < g < 1\2 | ||
| | '' | | | g = ''14\29, 15\31, 16\33''-17\35 | ||
| | 25g-12-(1-2g) = 27g-12 | | | 25g-12-(1-2g) = 27g-12 | ||
|- | |- | ||
Line 1,879: | Line 1,879: | ||
| | [[7L 20s]] | | | [[7L 20s]] | ||
| | 23\27 < g < 6\7 | | | 23\27 < g < 6\7 | ||
| | g = 29\34, 35\41, 41\48- | | | g = 29\34, 35\41, 41\48-47\55 | ||
| | 20g-17-(6-7g) = 27g-23 | | | 20g-17-(6-7g) = 27g-23 | ||
|- | |- | ||
Line 1,978: | Line 1,978: | ||
|} | |} | ||
= 28-tone = | == 28-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 1,988: | Line 1,988: | ||
| | [[1L 27s]] | | | [[1L 27s]] | ||
| | 27\28 < g < 1 | | | 27\28 < g < 1 | ||
| | '' | | | g = ''28\29, 29\30, 30\31-30\32'' | ||
| | 27g-26-(1-g) = 28g-27 | | | 27g-26-(1-g) = 28g-27 | ||
|- | |- | ||
| | [[2L 26s]] | | | [[2L 26s]] | ||
| | 13\28 < g < 1\2 | | | 13\28 < g < 1\2 | ||
| | '' | | | g = ''14\30, 15\32, 16\34''-17\36 | ||
| | 13g-6-(1\2-g) = 14g-13\2 | | | 13g-6-(1\2-g) = 14g-13\2 | ||
|- | |- | ||
| | [[3L 25s]] | | | [[3L 25s]] | ||
| | 9\28 < g < 1\3 | | | 9\28 < g < 1\3 | ||
| | g = ''10\31'', ''11\34'', 12\37- | | | g = ''10\31'', ''11\34'', 12\37-13\40 | ||
| | 25g-8-(1-3g) = 28g-9 | | | 25g-8-(1-3g) = 28g-9 | ||
|- | |- | ||
Line 2,083: | Line 2,083: | ||
| | [[20L 8s]] | | | [[20L 8s]] | ||
| | 4\28 < g < 3\20 | | | 4\28 < g < 3\20 | ||
| | g = '''7\48''', 10\68, 13\88- | | | g = '''7\48''', 10\68, 13\88-16\108 | ||
| | 2g-1\4-(3\4-5g) = 7g-1 | | | 2g-1\4-(3\4-5g) = 7g-1 | ||
|- | |- | ||
Line 2,122: | Line 2,122: | ||
|} | |} | ||
= 29-tone = | == 29-tone == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 2,132: | Line 2,132: | ||
| | [[1L 28s]] | | | [[1L 28s]] | ||
| | 28\29 < g < 1 | | | 28\29 < g < 1 | ||
| | '' | | | g = ''29\30, 30\31, 31\32-32\33'' | ||
| | 28g-27-(1-g) = 29g-28 | | | 28g-27-(1-g) = 29g-28 | ||
|- | |- | ||
| | [[2L 27s]] | | | [[2L 27s]] | ||
| | 14\29 < g < 1\2 | | | 14\29 < g < 1\2 | ||
| | '' | | | g = ''15\31, 16\33, 17\35''-18\37 | ||
| | 27g-13-(1-2g) = 29g-15 | | | 27g-13-(1-2g) = 29g-15 | ||
|- | |- |