11edf: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}


'''22EDF''' is the [[EDF|equal division of the just perfect fifth]] into 22 parts of 31.907 [[cent|cents]] each, corresponding to 37.6092 [[edo]] (similar to every fifth step of [[188edo]]).
'''11EDF''' is the [[EDF|equal division of the just perfect fifth]] into 11 parts of 63.8141 [[cent|cents]] each, corresponding to 18.8046 [[edo]] (similar to every fifth step of [[94edo]]).


==Intervals==
==Intervals==
Line 16: Line 16:
|-
|-
| | 1
| | 1
| | 31.907
| | 63.8141
| | [[55/54]]
| | ([[28/27]]), ([[27/26]])
| |  
| |  
|-
|-
| | 2
| | 2
| | 63.8141
| | 127.6282
| | ([[28/27]]), ([[27/26]])
| |[[14/13]]
| |  
| |  
|-
|-
| | 3
| | 3
| | 95.7211
| | 191.4423
| |  
| |  
| |  
| |  
|-
|-
| | 4
| | 4
| | 127.6282
| | 255.2564
| | [[14/13]]
| |  
| |  
| |  
|-
|-
| | 5
| | 5
| | 159.5352
| | 319.0705
| | 57/52
| | 6/5
| |  
| |  
|-
|-
| | 6
| | 6
| | 191.4423
| | 382.8845
| |  
| | 5/4
| |  
| |  
|-
|-
| | 7
| | 7
| | 223.3493
| | 446.6986
| |8/7
| |
| |  
| |  
|-
|-
| | 8
| | 8
| | 255.2564
| | 510.5127
| |  
| |  
| |  
| |  
|-
|-
| | 9
| | 9
| | 287.1634
| | 574.3268
| |13/11
| |39/28
| |  
| |  
|-
|-
| | 10
| | 10
| | 319.0705
| | 638.1409
| |6/5
| |([[13/9]])
| |  
| |  
|-
|-
| | 11
| | 11
| | 350.9775
| | 701.955
| | 60/49, 49/40
| |'''exact [[3/2]]'''
| |  
| | just perfect fifth
|-
|-
| | 12
| | 12
| | 382.8845
| | 765.7691
| |5/4
| |14/9, 81/52
| |  
| |  
|-
|-
| | 13
| | 13
| | 414.7916
| | 828.5732
| |14/11
| |21/13
| |  
| |  
|-
|-
| | 14
| | 14
| | 446.6986
| | 893.3973
| |  
| |  
| |  
| |  
|-
|-
| | 15
| | 15
| | 478.6057
| | 956.2114
| |  
| |  
| |  
| |  
|-
|-
| | 16
| | 16
| | 510.5127
| | 1020.0255
| |  
| | 9/5
| |  
| |  
|-
|-
| | 17
| | 17
| | 542.4198
| | 1084.8395
| | [[26/19]]
| | 15/8
| |  
| |  
|-
|-
| | 18
| | 18
| | 574.3268
| | 1148.6536
| | 39/28
| |  
| |  
| |  
|-
|-
| | 19
| | 19
| | 606.2339
| | 1211.4677
| |64/45
| |
| |  
| |  
|-
|-
| | 20
| | 20
| | 638.1409
| | 1276.2816
| | ([[13/9]])
| | 117/56
| |  
| |  
|-
|-
| | 21
| | 21
| | 670.048
| | 1340.0959
| | 81/55
| | 13/6
| |  
| |  
|-
|-
| | 22
| | 22
| | 701.955
| | 1403.91
| | '''exact [[3/2]]'''
| |'''exact''' 9/4
| | just perfect fifth
| |  
|-
|23
|733.862
|55/36
|
|-
|24
|765.7691
|14/9, 81/52
|
|-
|25
|797.6761
|
|
|-
|26
|828.5732
|21/13
|
|-
|27
|861.4902
|171/104
|
|-
|28
|893.3973
|
|
|-
|29
|925.3043
|12/7
|
|-
|30
|956.2114
|
|
|-
|31
|988.1184
|39/22
|
|-
|32
|1020.0255
|9/5
|
|-
|33
|1052.9235
|90/49, 147/80
|
|-
|34
|1084.8395
|15/8
|
|-
|35
|1116.7466
|21/11
|
|-
|36
|1148.6536
|
|
|-
|37
|1180.5607
|
|
|-
|38
|1211.4677
|
|
|-
|39
|1244.3748
|39/19
|
|-
|40
|1276.2816
|117/56
|
|-
|41
|1308.1889
|32/15
|
|-
|42
|1340.0959
|13/6
|
|-
|43
|1372.003
|243/110
|
|-
|44
|1403.91
|'''exact''' 9/4
|
|}
|}