Kalismic temperaments: Difference between revisions
+pessoal, +lycoris |
Sorting |
||
Line 72: | Line 72: | ||
Badness: 0.416 × 10<sup>-3</sup> | Badness: 0.416 × 10<sup>-3</sup> | ||
== Van Gogh == | == Van Gogh == | ||
Line 98: | Line 85: | ||
[[Badness]]: 0.297 × 10<sup>-3</sup> | [[Badness]]: 0.297 × 10<sup>-3</sup> | ||
== Hnoss == | == Hnoss == | ||
Line 267: | Line 194: | ||
Badness: 1.23 × 10<sup>-3</sup> | Badness: 1.23 × 10<sup>-3</sup> | ||
== Loki == | |||
[[Subgroup]]: 2.3.5.7.11 | |||
[[Comma list]]: 5632/5625, 9801/9800 | |||
[[Mapping]]: [{{val| 2 0 0 -21 -18 }}, {{val| 0 1 0 4 2 }}, {{val| 0 0 1 3 4 }}] | |||
Mapping generators: ~99/70, ~3, ~5 | |||
{{Val list|legend=1| 12, 22, 34d, 56d, 74d, 84de, 96d, 118, 130, 152, 248, 270, 670, 822, 940, 1092, 1362c, 2032c, 2302c }} | |||
[[Badness]]: 0.493 × 10<sup>-3</sup> | |||
== Pessoal == | |||
{{See also| Pessoalisma }} | |||
[[Subgroup]]: 2.3.5.7.11 | |||
[[Comma list]]: 9801/9800, 131072/130977 | |||
[[Mapping]]: [{{val| 2 0 1 10 14 }}, {{val| 0 1 0 -1 -3 }}, {{val| 0 0 3 -1 2 }}] | |||
Mapping generators: ~99/70, ~3, ~32/21 | |||
[[Optimal tuning]] ([[CTE]]): ~99/70 = 1\2, ~3/2 = 702.0759, ~32/21 = 728.7910 | |||
{{Val list|legend=1| 36, 46, 84, 94, 130, 224, 270, 494, 764, 1164, 1658, 3586cd, 5244cdde, 6008bcdde }} | |||
[[Badness]]: 0.499 × 10<sup>-3</sup> | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1716/1715, 2080/2079, 4096/4095 | |||
Mapping: [{{val| 2 0 1 10 14 13 }}, {{val| 0 1 0 -1 -3 -1 }}, {{val| 0 0 3 -1 2 -2 }}] | |||
Optimal tuning (CTE): ~99/70 = 1\2, ~3/2 = 702.0637, ~32/21 = 728.7786 | |||
Optimal GPV sequence: {{Val list| 36, 46, 84, 94, 130, 224, 270, 494, 764, 1258, 1882d, 2152d }} | |||
Badness: 0.391 × 10<sup>-3</sup> | |||
== Rishi == | |||
The 7-limit comma {{monzo| 65 -84 10 16 }} ~ 0.13¢ has the ratio of the exponents of 3 and 2 that is close to the one in 81/8. The square root of the latter is close to 35/11. This suggests tempering out (81/8)(35/11)<sup>-2</sup>, which is the kalisma. | |||
Apart from 35/11, 35/33, and the equivalents of their squares, 81/8 and 9/8, another equave that comes to mind is 3/2, especially after tempering out the [[chalmersia]]. When 3/2 is chosen as the equave, Fokker blocks of 34 notes can be used that are close to [[34edf]] and 58edo. | |||
[[Subgroup]]: 2.3.5.7.11 | |||
[[Comma list]]: 9801/9800, 572145834917888/571919811374025 | |||
[[Mapping]]: [{{val| 2 0 3 -10 -4 }}, {{val| 0 1 2 4 4 }}, {{val| 0 0 8 -5 3 }}] | |||
Mapping generators: ~99/70, ~3, ~17364375/14172488 | |||
{{Val list|legend=1| 24, 34d, 58, …, 436, 460, 494, 954, 1448, 1506, 2460, 2954, 7414, 9874, 12828e }} | |||
[[Badness]]: 2.10 × 10<sup>-3</sup> | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 9801/9800, 10648/10647, 371293/371250 | |||
Mapping: [{{val| 2 0 3 -10 -4 2 }}, {{val| 0 1 2 4 4 3 }}, {{val| 0 0 8 -5 3 7 }}] | |||
Mapping generators: ~99/70, ~3, ~364/297 | |||
Optimal GPV sequence: {{Val list| 24, 34d, 58, …, 436, 460, 494, 954, 1448, 1506, 2460, 2954, 5414, 6920, 7414, 9874, 12828e }} | |||
[[Badness]]: 0.505 × 10<sup>-3</sup> | |||
[[Category:Temperament collections]] | [[Category:Temperament collections]] | ||
[[Category:Kalismic temperaments| ]] <!-- main article --> | [[Category:Kalismic temperaments| ]] <!-- main article --> | ||
[[Category:Rank 3]] | [[Category:Rank 3]] |