277edo: Difference between revisions

Plumtree (talk | contribs)
m Infobox ET added
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|"
 
(12 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
'''277EDO''' is the [[EDO|equal division of the octave]] into 277 parts of 4.3321 [[cent]]s each. It tempers out 32805/32768 (schisma) and |-11 -37 30> in the 5-limit. Using the patent val, it tempers out 4375/4374, 65625/65536, and 829440/823543 in the 7-limit; 540/539, 6250/6237, 15488/15435, and 35937/35840 in the 11-limit; 625/624, 729/728, 1573/1568, 2080/2079, and 2200/2197 in the 13-limit. Using the 277d val, it tempers out 1029/1024, 10976/10935, and 48828125/48771072 in the 7-limit; 385/384, 441/440, 19712/19683, and 234375/234256 in the 11-limit; 625/624, 847/845, 1001/1000, and 1575/1573 in the 13-limit. The patent val [[support]]s the [[pontiac]], and the 277d val supports the [[guiron]] and the [[widefourth]].
{{ED intro}}


277EDO is the 59th [[prime EDO]].
== Theory ==
277edo is a good [[5-limit]] tuning; however, it is in[[consistent]] in the [[7-odd-limit]]. As an equal temperament, it [[tempering out|tempers out]] 32805/32768 ([[schisma]]) and {{monzo| -11 -37 30 }} in the 5-limit.  


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
The [[patent val]] {{val| 277 439 643 778 }} tempers out [[4375/4374]], [[65625/65536]], and 829440/823543 in the 7-limit; [[540/539]], [[6250/6237]], 15488/15435, and 35937/35840 in the 11-limit; [[625/624]], [[729/728]], [[1573/1568]], [[2080/2079]], and [[2200/2197]] in the 13-limit. It [[support]]s [[pontiac]].
[[Category:Prime EDO]]
 
The 277d val {{val| 277 439 643 '''777''' }} tempers out [[1029/1024]], [[10976/10935]], and 48828125/48771072 in the 7-limit; [[385/384]], [[441/440]], [[19712/19683]], and 234375/234256 in the 11-limit; 625/624, [[847/845]], [[1001/1000]], and [[1575/1573]] in the 13-limit. It supports [[guiron]] and [[widefourth]].
 
=== Prime harmonics ===
{{Harmonics in equal|277}}
 
=== Subsets and supersets ===
277edo is the 59th [[prime edo]].
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| -439 277 }}
| {{mapping| 277 439 }}
| +0.0473
| 0.0473
| 1.09
|-
| 2.3.5
| 32805/32768, {{monzo| -11 -37 30 }}
| {{mapping| 277 439 643 }}
| +0.1398
| 0.1364
| 3.15
|}
 
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
| 1
| 115\277
| 498.19
| 4/3
| [[Helmholtz (temperament)|Helmholtz]]
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
 
== Music ==
; [[Francium]]
* "Rizzardry" from ''The Scallop Disco Accident'' (2025) – [https://open.spotify.com/track/1NqjyKORN0c2AIOhTMMUK7 Spotify] | [https://francium223.bandcamp.com/track/rizzardry Bandcamp] | [https://www.youtube.com/watch?v=HZ67knYwALA YouTube] – in Zangaric, 277edo tuning
* "It's a Smell." from ''Random Sentences'' (2025) – [https://open.spotify.com/track/35sVZfy1mDsPHZwjgh8Sql Spotify] | [https://francium223.bandcamp.com/track/its-a-smell Bandcamp] | [https://www.youtube.com/watch?v=L9Tn7n-THCM YouTube] – in Yerkesic, 277edo tuning