56edo: Difference between revisions
No edit summary |
→Music: Add Bryan Deister's ''Waltz in 56edo'' (2025) |
||
(43 intermediate revisions by 13 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
56edo shares its near perfect quality of classical major third with [[28edo]], which it doubles, while also adding a superpythagorean 5th that is a convergent towards the [[Metallic harmonic series|bronze metallic mean]], following [[17edo]] and preceding [[185edo]]. Because it contains 28edo's major third and also has a step size very close to the syntonic comma, 56edo contains very accurate approximations of both the classic major third [[5/4]] and the Pythagorean major third [[81/64]]. Unfortunately, this "Pythagorean major third" is not the major third as is stacked by fifths in 56edo. | |||
One step of 56edo is the closest direct approximation to the syntonic comma, [[81/80]], with the number of directly approximated syntonic commas per octave being 55.7976. (However, note that by [[patent val]] mapping, 56edo actually maps the syntonic comma inconsistently, to two steps.) [[Barium]] temperament realizes this proximity through regular temperament theory, and is supported by notable edos like [[224edo]], [[1848edo]], and [[2520edo]], which is a highly composite edo. | |||
56edo can be used to tune [[hemithirds]], [[superkleismic]], [[sycamore]] and [[keen]] temperaments, and using {{val| 56 89 130 158 }} (56d) as the equal temperament val, for [[pajara]]. It provides the [[optimal patent val]] for 7-, 11- and 13-limit [[sycamore]], and the 11-limit 56d val is close to the [[POTE tuning]] for 11-limit pajara. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|56}} | |||
=== Subsets and supersets === | |||
Since 56 factors into {{nowrap|2<sup>3</sup> × 7}}, 56edo has subset edos {{EDOs| 2, 4, 7, 8, 14, 28 }}. | |||
== Intervals == | == Intervals == | ||
{| class="wikitable center-all right-2 left-3" | {| class="wikitable center-all right-2 left-3" | ||
|- | |||
! # | ! # | ||
! Cents | ! Cents | ||
! Approximate | ! Approximate ratios* | ||
! [[Ups and downs notation]] | |||
|- | |- | ||
| 0 | | 0 | ||
| 0. | | 0.0 | ||
| [[1/1]] | | [[1/1]] | ||
| {{UDnote|step=0}} | |||
|- | |- | ||
| 1 | | 1 | ||
| 21. | | 21.4 | ||
| [[49/48]], [[64/63]] | | ''[[49/48]]'', [[55/54]], [[56/55]], [[64/63]] | ||
| {{UDnote|step=1}} | |||
|- | |- | ||
| 2 | | 2 | ||
| 42. | | 42.9 | ||
| [[28/27]], [[50/49]], [[81/80]] | | ''[[28/27]]'', [[40/39]], [[45/44]], [[50/49]], ''[[81/80]]'' | ||
| {{UDnote|step=2}} | |||
|- | |- | ||
| 3 | | 3 | ||
| 64. | | 64.3 | ||
| [[25/24]], [[36/35]], [[33/32]] | | [[25/24]], ''[[36/35]]'', ''[[33/32]]'' | ||
| {{UDnote|step=3}} | |||
|- | |- | ||
| 4 | | 4 | ||
| 85. | | 85.7 | ||
| [[21/20]], [[22/21]] | | [[19/18]], [[20/19]], [[21/20]], [[22/21]] | ||
| {{UDnote|step=4}} | |||
|- | |- | ||
| 5 | | 5 | ||
| 107. | | 107.1 | ||
| [[16/15]] | | [[16/15]], [[17/16]], [[18/17]] | ||
| {{UDnote|step=5}} | |||
|- | |- | ||
| 6 | | 6 | ||
| 128. | | 128.6 | ||
| [[15/14]], [[13/12]], [[14/13]] | | [[15/14]], [[13/12]], [[14/13]] | ||
| {{UDnote|step=6}} | |||
|- | |- | ||
| 7 | | 7 | ||
| 150. | | 150.0 | ||
| [[12/11]] | | [[12/11]] | ||
| {{UDnote|step=7}} | |||
|- | |- | ||
| 8 | | 8 | ||
| 171. | | 171.4 | ||
| [[10/9]], [[11/10]] | | ''[[10/9]]'', [[11/10]], [[21/19]] | ||
| {{UDnote|step=8}} | |||
|- | |- | ||
| 9 | | 9 | ||
| 192. | | 192.9 | ||
| [[28/25]] | | [[19/17]], [[28/25]] | ||
| {{UDnote|step=9}} | |||
|- | |- | ||
| 10 | | 10 | ||
| 214. | | 214.3 | ||
| [[9/8]] | | [[9/8]], [[17/15]] | ||
| {{UDnote|step=10}} | |||
|- | |- | ||
| 11 | | 11 | ||
| 235. | | 235.7 | ||
| [[8/7]] | | [[8/7]] | ||
| {{UDnote|step=11}} | |||
|- | |- | ||
| 12 | | 12 | ||
| 257. | | 257.1 | ||
| [[7/6]] | | [[7/6]] | ||
| {{UDnote|step=12}} | |||
|- | |- | ||
| 13 | | 13 | ||
| 278. | | 278.6 | ||
| [[ | | [[13/11]], [[20/17]] | ||
| {{UDnote|step=13}} | |||
|- | |- | ||
| 14 | | 14 | ||
| 300. | | 300.0 | ||
| [[25/21]] | | [[19/16]], [[25/21]] | ||
| {{UDnote|step=14}} | |||
|- | |- | ||
| 15 | | 15 | ||
| 321. | | 321.4 | ||
| [[6/5]] | | [[6/5]] | ||
| {{UDnote|step=15}} | |||
|- | |- | ||
| 16 | | 16 | ||
| 342. | | 342.9 | ||
| [[11/9]], [[ | | [[11/9]], [[17/14]] | ||
| {{UDnote|step=16}} | |||
|- | |- | ||
| 17 | | 17 | ||
| 364. | | 364.3 | ||
| [[ | | [[16/13]], [[21/17]], [[26/21]] | ||
| {{UDnote|step=17}} | |||
|- | |- | ||
| 18 | | 18 | ||
| 385. | | 385.7 | ||
| [[5/4]] | | [[5/4]] | ||
| {{UDnote|step=18}} | |||
|- | |- | ||
| 19 | | 19 | ||
| 407. | | 407.1 | ||
| [[14/11]] | | [[14/11]], [[19/12]], [[24/19]] | ||
| {{UDnote|step=19}} | |||
|- | |- | ||
| 20 | | 20 | ||
| 428. | | 428.6 | ||
| [[32/25]], [[33/26]] | | [[32/25]], [[33/26]] | ||
| {{UDnote|step=20}} | |||
|- | |- | ||
| 21 | | 21 | ||
| 450. | | 450.0 | ||
| [[9/7]], [[13/10]] | | ''[[9/7]]'', [[13/10]] | ||
| {{UDnote|step=21}} | |||
|- | |- | ||
| 22 | | 22 | ||
| 471. | | 471.4 | ||
| [[21/16]] | | [[17/13]], [[21/16]] | ||
| {{UDnote|step=22}} | |||
|- | |- | ||
| 23 | | 23 | ||
| 492. | | 492.9 | ||
| [[4/3]] | | [[4/3]] | ||
| {{UDnote|step=23}} | |||
|- | |- | ||
| 24 | | 24 | ||
| 514. | | 514.3 | ||
| | | [[35/26]] | ||
| {{UDnote|step=24}} | |||
|- | |- | ||
| 25 | | 25 | ||
| 535. | | 535.7 | ||
| [[ | | [[15/11]], [[19/14]], [[26/19]], ''[[27/20]]'' | ||
| {{UDnote|step=25}} | |||
|- | |- | ||
| 26 | | 26 | ||
| 557. | | 557.1 | ||
| [[11/8]] | | [[11/8]] | ||
| {{UDnote|step=26}} | |||
|- | |- | ||
| 27 | | 27 | ||
| 578. | | 578.6 | ||
| [[7/5]] | | [[7/5]] | ||
| {{UDnote|step=27}} | |||
|- | |- | ||
| 28 | | 28 | ||
| 600. | | 600.0 | ||
| [[ | | [[17/12]], [[24/17]] | ||
| {{UDnote|step=28}} | |||
|- | |- | ||
| … | | … | ||
| … | | … | ||
| … | | … | ||
| … | |||
|} | |||
<nowiki/>* The following table assumes the 19-limit [[patent val]]; other approaches are possible. Inconsistent intervals are marked in ''italics''. | |||
== Notation == | |||
=== Ups and downs notation === | |||
56edo can be notated using [[ups and downs notation|ups and downs]]. Trup is equivalent to quudsharp, trudsharp is equivalent to quup, etc. | |||
{{Sharpness-sharp7a}} | |||
Alternatively, sharps and flats with arrows borrowed from [[Helmholtz–Ellis notation]] can be used: | |||
{{Sharpness-sharp7}} | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as [[63edo#Sagittal notation|63-EDO]]. | |||
==== Evo flavor ==== | |||
<imagemap> | |||
File:56-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 575 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[64/63]] | |||
rect 120 80 220 106 [[81/80]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:56-EDO_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Revo flavor ==== | |||
<imagemap> | |||
File:56-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 543 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[64/63]] | |||
rect 120 80 220 106 [[81/80]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:56-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
== Approximation to JI == | |||
{{Q-odd-limit intervals}} | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| 89 -56 }} | |||
| {{mapping| 56 89 }} | |||
| −1.64 | |||
| 1.63 | |||
| 7.64 | |||
|- | |||
| 2.3.5 | |||
| 2048/2025, 1953125/1889568 | |||
| {{mapping| 56 89 130 }} | |||
| −1.01 | |||
| 1.61 | |||
| 7.50 | |||
|- | |||
| 2.3.5.7 | |||
| 686/675, 875/864, 1029/1024 | |||
| {{mapping| 56 89 130 157 }} | |||
| −0.352 | |||
| 1.80 | |||
| 8.38 | |||
|- | |||
| 2.3.5.7.11 | |||
| 100/99, 245/242, 385/384, 686/675 | |||
| {{mapping| 56 89 130 157 194 }} | |||
| −0.618 | |||
| 1.69 | |||
| 7.90 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 91/90, 100/99, 169/168, 245/242, 385/384 | |||
| {{mapping| 56 89 130 157 194 207 }} | |||
| −0.299 | |||
| 1.70 | |||
| 7.95 | |||
|} | |} | ||
== | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperament | |||
|- | |||
| 1 | |||
| 3\56 | |||
| 64.29 | |||
| 25/24 | |||
| [[Sycamore]] | |||
|- | |||
| 1 | |||
| 9\56 | |||
| 192.86 | |||
| 28/25 | |||
| [[Hemithirds]] | |||
|- | |||
| 1 | |||
| 11\56 | |||
| 235.71 | |||
| 8/7 | |||
| [[Slendric]] | |||
|- | |||
| 1 | |||
| 15\56 | |||
| 321.43 | |||
| 6/5 | |||
| [[Superkleismic]] | |||
|- | |||
| 1 | |||
| 25\56 | |||
| 535.71 | |||
| 15/11 | |||
| [[Maquila]] (56d) / [[maquiloid]] (56) | |||
|- | |||
| 2 | |||
| 11\56 | |||
| 235.71 | |||
| 8/7 | |||
| [[Echidnic]] | |||
|- | |||
| 2 | |||
| 23\56<br>(5\56) | |||
| 492.86<br>(107.14) | |||
| 4/3<br>(17/16) | |||
| [[Keen]] / keenic | |||
|- | |||
| 4 | |||
| 23\56<br>(5\56) | |||
| 492.86<br>(107.14) | |||
| 4/3<br>(17/16) | |||
| [[Bidia]] (7-limit) | |||
|- | |||
| 7 | |||
| 23\56<br>(1\56) | |||
| 492.86<br>(21.43) | |||
| 4/3<br>(250/243) | |||
| [[Sevond]] | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | == Scales == | ||
* [[Supra7]] | * [[Supra7]] | ||
* [[Supra12]] | * [[Supra12]] | ||
* Subsets of [[echidnic]][16] (6u8d): | |||
** Frankincense{{idio}} (this is the original/default tuning): 364.3 - 492.9 - 707.1 - 835.7 - 1200.0 | |||
** Quasi-[[equipentatonic]]: 257.1 - 492.9 - 707.1 - 964.3 - 1200.0 | |||
** Sakura-like scale containing [[phi]]: 107.1 - 492.9 - 707.1 - 835.7 - 1200.0 | |||
* Subsets of [[sevond]][14] | |||
** Evened minor pentatonic (approximated from [[72edo]]): 321.4 - 492.9 - 685.7 - 1028.6 - 1200.0 | |||
== Instruments == | |||
[[Lumatone mapping for 56edo|Lumatone mappings for 56edo]] are available. | |||
[[ | == Music == | ||
[[ | ; [[Bryan Deister]] | ||
* [https://www.youtube.com/shorts/o0imqFPDh9k ''56edo''] (2023) | |||
* [https://www.youtube.com/watch?v=xkfao6yGKGE ''Curious Light - DOORS (microtonal cover in 56edo)''] (2025) | |||
* [https://www.youtube.com/watch?v=qzMOnS-lgWs ''Waltz in 56edo''] (2025) | |||
; [[Budjarn Lambeth]] | |||
* [https://www.youtube.com/watch?v=VsBXIvBZY6A ''56edo Track (Echidnic16 Scale)''] (2025) | |||
; [[Claudi Meneghin]] | |||
* [https://www.youtube.com/watch?v=xWKa59qDkXQ ''Prelude & Fugue in Pajara''] (2020) – in pajara, 56edo tuning | |||
* [https://www.youtube.com/watch?v=3oO1SIVWBgI ''Mirror Canon in F''] (2020) | |||
* [https://www.youtube.com/watch?v=s1h083BRWXU ''Canon 3-in-1 on a Ground''] (2020) | |||
[[Category:Hemithirds]] | [[Category:Hemithirds]] | ||
[[Category:Keen]] | [[Category:Keen]] | ||
[[Category:Listen]] | |||
[[Category:Pajara]] | [[Category:Pajara]] | ||
[[Category:Superkleismic]] | [[Category:Superkleismic]] | ||
[[Category:Sycamore]] | [[Category:Sycamore]] |