282edo: Difference between revisions

Theory: +essentially tempered chords and adopt new template
m Cleanup and update
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Infobox ET
{{Infobox ET}}
| Prime factorization = 2 × 3 × 47
{{ED intro}}
| Step size = 4.25532¢
| Fifth = 165\282 (702.12¢) (→ [[94edo|55\94]])
| Semitones = 27:21 (114.89¢ : 89.36¢)
| Consistency = 29
}}
The '''282 equal divisions of the octave''' ('''282edo'''), or the '''282(-tone) equal temperament''' ('''282tet''', '''282et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 282 parts of about 4.26 [[cent]]s each.


== Theory ==
== Theory ==
282edo is the smallest equal temperament uniquely [[consistent]] through to the [[23-odd-limit]], and also the smallest consistent to the [[29-odd-limit]]. It shares the same 3rd, 7th, and 13th harmonics with [[94edo]] (282 = 3 × 94), as well as [[11/10]] and [[20/17]] (supporting the [[Stearnsmic clan #Garistearn|garistearn]] temperament). It has a distinct sharp tendency for odd harmonics up to 29. It tempers out [[6144/6125]] (porwell), 118098/117649 (stearnsma), and [[250047/250000]] (landscape comma) in the 7-limit, and [[540/539]] and 5632/5625 in the 11-limit, so that it provides the [[optimal patent val]] for the [[jupiter]] temperament; it also tempers out [[4000/3993]] and 234375/234256, providing the optimal patent val for [[septisuperfourth]] temperament. In the 13-limit, it tempers out [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], and [[10648/10647]]. It allows [[essentially tempered chord]]s including [[swetismic chords]], [[squbemic chords]], and [[petrmic triad]] in the 13-odd-limit, in addition to [[nicolic chords]] in the 15-odd-limit.  
282edo is the smallest edo [[consistency|distinctly consistent]] through to the [[23-odd-limit]], and also the smallest consistent to the [[29-odd-limit]]. It shares the same 3rd, 7th, and 13th harmonics with [[94edo]] ({{nowrap| 282 {{=}} 3 × 94 }}), as well as [[11/10]] and [[20/17]] ([[support]]ing the [[Stearnsmic clan #Garistearn|garistearn]] temperament). It has a distinct sharp tendency for odd harmonics up to 29.  
 
The equal temperament [[tempering out|tempers out]] [[6144/6125]] (porwell comma), 118098/117649 (stearnsma), and [[250047/250000]] (landscape comma) in the 7-limit, and [[540/539]] and [[5632/5625]] in the 11-limit, so that it provides the [[optimal patent val]] for the [[jupiter]] temperament; it also tempers out [[4000/3993]] and 234375/234256, providing the optimal patent val for [[septisuperfourth]] temperament. In the 13-limit, it tempers out [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], and [[10648/10647]].  
 
It allows [[essentially tempered chord]]s including [[swetismic chords]], [[squbemic chords]], and [[petrmic chords]] in the 13-odd-limit, in addition to [[nicolic chords]] in the 15-odd-limit.  


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|282|columns=11}}
{{Harmonics in equal|282|columns=11}}
=== Subsets and supersets ===
Since 282 factors into primes as {{nowrap| 2 × 3 × 47 }}, 282edo has subset edos {{EDOs| 2, 3, 47, 94, and 141 }}.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
Line 26: Line 28:
|-
|-
| 2.3.5
| 2.3.5
| {{monzo| 32 -7 -9 }}, {{monzo| -7 22 -12 }}
| {{Monzo| 32 -7 -9 }}, {{monzo| -7 22 -12 }}
| [{{val| 282 447 655 }}]
| {{Mapping| 282 447 655 }}
| -0.1684
| −0.1684
| 0.1671
| 0.1671
| 3.93
| 3.93
Line 34: Line 36:
| 2.3.5.7
| 2.3.5.7
| 6144/6125, 118098/117649, 250047/250000
| 6144/6125, 118098/117649, 250047/250000
| [{{val| 282 447 655 792 }}]
| {{Mapping| 282 447 655 792 }}
| -0.2498
| −0.2498
| 0.2020
| 0.2020
| 4.75
| 4.75
Line 41: Line 43:
| 2.3.5.7.11
| 2.3.5.7.11
| 540/539, 4000/3993, 5632/5625, 137781/137500
| 540/539, 4000/3993, 5632/5625, 137781/137500
| [{{val| 282 447 655 792 976 }}]
| {{Mapping| 282 447 655 792 976 }}
| -0.3081
| −0.3081
| 0.2151
| 0.2151
| 5.06
| 5.06
Line 48: Line 50:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 540/539, 729/728, 1575/1573, 2200/2197, 3584/3575
| 540/539, 729/728, 1575/1573, 2200/2197, 3584/3575
| [{{val| 282 447 655 792 976 1044 }}]
| {{Mapping| 282 447 655 792 976 1044 }}
| -0.3480
| −0.3480
| 0.2156
| 0.2156
| 5.07
| 5.07
Line 55: Line 57:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 2200/2197
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 2200/2197
| [{{val| 282 447 655 792 976 1044 1153 }}]
| {{Mapping| 282 447 655 792 976 1044 1153 }}
| -0.3481
| −0.3481
| 0.1996
| 0.1996
| 4.69
| 4.69
Line 62: Line 64:
| 2.3.5.7.11.13.17.19
| 2.3.5.7.11.13.17.19
| 456/455, 540/539, 729/728, 936/935, 969/968, 1156/1155, 1575/1573
| 456/455, 540/539, 729/728, 936/935, 969/968, 1156/1155, 1575/1573
| [{{val| 282 447 655 792 976 1044 1153 1198 }}]
| {{Mapping| 282 447 655 792 976 1044 1153 1198 }}
| -0.3152
| −0.3152
| 0.2061
| 0.2061
| 4.84
| 4.84
Line 69: Line 71:
| 2.3.5.7.11.13.17.19.23
| 2.3.5.7.11.13.17.19.23
| 456/455, 540/539, 729/728, 760/759, 936/935, 969/968, 1156/1155, 1288/1287
| 456/455, 540/539, 729/728, 760/759, 936/935, 969/968, 1156/1155, 1288/1287
| [{{val| 282 447 655 792 976 1044 1153 1198 1276 }}]
| {{Mapping| 282 447 655 792 976 1044 1153 1198 1276 }}
| -0.3173
| −0.3173
| 0.1944
| 0.1944
| 4.57
| 4.57
|}
|}
* 282et has a lower relative error than any previous equal temperaments in the 23-limit, past [[270edo|270]] and before [[311edo|311]].


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per octave
|-
! Generator<br>(reduced)
! Periods<br>per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Associated<br>ratio*
! Temperaments
! Temperaments
|-
|-
Line 94: Line 98:
| 565.96
| 565.96
| 4096/2835
| 4096/2835
| [[Tricot]] / [[trident]] (282ef)
| [[Alphatrident]] (7-limit)
|-
|-
| 2
| 2
Line 118: Line 122:
| 157.45
| 157.45
| 35/32
| 35/32
| [[Nessafof]]
| [[Nessafof]] (7-limit)
|-
|-
| 6
| 6
| 51\282<br>(4\282)
| 51\282<br>(4\282)
| 217.02<br>(17.02)
| 217.02<br>(17.02)
| 567/500<br>(245/243)
| 17/15<br>(105/104)
| [[Stearnscape]]
| [[Stearnscape]]
|-
| 6
| 80\282<br>(14\282)
| 340.43<br>(59.57)
| 162/133<br>(88/85)
| [[Semiseptichrome]]
|-
|-
| 6
| 6
Line 132: Line 142:
| [[Sextile]]
| [[Sextile]]
|}
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct


[[Category:Equal divisions of the octave]]
[[Category:Jupiter]]
[[Category:29-limit]]
[[Category:Septisuperfourth]]
[[Category:Septisuperfourth]]
[[Category:Jupiter]]