328edo: Difference between revisions

+rank-2 temperaments
ArrowHead294 (talk | contribs)
mNo edit summary
 
(12 intermediate revisions by 5 users not shown)
Line 1: Line 1:
The '''328 equal divisions of the octave''' ('''328edo'''), or the '''328(-tone) equal temperament''' ('''328tet''', '''328et''') when viewed from a [[regular temperament]] perspective, divides the octave into 328 [[equal]] parts of 3.659 [[cent]]s each.
{{Infobox ET}}
{{ED intro}}


== Theory ==
== Theory ==
328edo is [[enfactored]] in the 5-limit, with the same tuning as [[164edo]]. It tempers out [[2401/2400]], [[3136/3125]], and [[6144/6125]] in the 7-limit, [[9801/9800]], [[16384/16335]] and [[19712/19683]] in the 11-limit, [[676/675]], [[1001/1000]], [[1716/1715]] and [[2080/2079]] in the 13-limit, [[936/935]], [[1156/1155]] and [[2601/2600]] in the 17-limit, so that it supports [[würschmidt]] and [[hemiwürschmidt]], and provides the [[optimal patent val]] for 7-limit hemiwürschmidt, 11- and 13-limit [[semihemiwür]], and 13-limit [[semiporwell]].  
328edo is [[enfactoring|enfactored]] in the [[5-limit]], with the same tuning as [[164edo]], but the approximation of higher [[harmonic]]s are much improved. It has a sharp tendency, with harmonics 3 through 17 all tuned sharp. The equal temperament [[tempering out|tempers out]] [[2401/2400]], [[3136/3125]], and [[6144/6125]] in the 7-limit, [[9801/9800]], [[16384/16335]] and [[19712/19683]] in the 11-limit, [[676/675]], [[1001/1000]], [[1716/1715]] and [[2080/2079]] in the 13-limit, [[936/935]], [[1156/1155]] and [[2601/2600]] in the 17-limit, so that it [[support]]s [[würschmidt]] and [[hemiwürschmidt]], and provides the [[optimal patent val]] for 7-limit hemiwürschmidt, 11- and 13-limit [[semihemiwür]], and 13-limit [[semiporwell]].  


328 factors into 2<sup>3</sup> × 41, with subset edos 2, 4, 8, 41, 82, and 164.
=== Prime harmonics ===
{{Harmonics in equal|328|intervals=prime|columns=11}}


=== Prime harmonics ===
=== Subsets and supersets ===
{{Primes in edo|328}}
Since 328 factors into {{Factorisation|328}}, 328edo has subset edos {{EDOs| 2, 4, 8, 41, 82, and 164 }}.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
Line 22: Line 25:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 3136/3125, 589824/588245
| 2401/2400, 3136/3125, 589824/588245
| [{{val| 328 520 762 921 }}]
| {{mapping| 328 520 762 921 }}
| -0.298
| −0.298
| 0.229
| 0.229
| 6.27
| 6.27
Line 29: Line 32:
| 2.3.5.7.11
| 2.3.5.7.11
| 2401/2400, 3136/3125, 9801/9800, 19712/19683
| 2401/2400, 3136/3125, 9801/9800, 19712/19683
| [{{val| 328 520 762 921 1135 }}]
| {{mapping| 328 520 762 921 1135 }}
| -0.303
| −0.303
| 0.205
| 0.205
| 5.61
| 5.61
Line 36: Line 39:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647
| 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647
| [{{val| 328 520 762 921 1135 1214 }}]
| {{mapping| 328 520 762 921 1135 1214 }}
| -0.295
| −0.295
| 0.188
| 0.188
| 5.15
| 5.15
Line 43: Line 46:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125
| 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125
| [{{val| 328 520 762 921 1135 1214 1341 }}]
| {{mapping| 328 520 762 921 1135 1214 1341 }}
| -0.293
| −0.293
| 0.174
| 0.174
| 4.77
| 4.77
Line 50: Line 53:


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
Note: 5-limit temperaments supported by 164et are not listed.
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per octave
|-
! Generator<br>(reduced)
! Periods<br />per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 77: Line 83:
|-
|-
| 2
| 2
| 111\328<br>(53\328)
| 111\328<br />(53\328)
| 406.10<br>(193.90)
| 406.10<br />(193.90)
| 495/392<br>(28/25)
| 495/392<br />(28/25)
| [[Semihemiwürschmidt]]
| [[Semihemiwürschmidt]]
|-
|-
| 8
| 8
| 136\328<br>(13\328)
| 136\328<br />(13\328)
| 497.56<br>(47.56)
| 497.56<br />(47.56)
| 4/3<br>(36/35)
| 4/3<br />(36/35)
| [[Twilight]]
| [[Twilight]]
|-
|-
| 41
| 41
| 49\328<br>(1\328)
| 49\328<br />(1\328)
| 179.27<br>(3.66)
| 179.27<br />(3.66)
| 567/512<br>(352/351)
| 567/512<br />(352/351)
| [[Hemicounterpyth]]
| [[Hemicountercomp]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


[[Category:Equal divisions of the octave]]
[[Category:Hemiwürschmidt]]
[[Category:Hemiwürschmidt]]
[[Category:Semiporwell]]
[[Category:Semiporwell]]