28edo: Difference between revisions

Wikispaces>xenwolf
**Imported revision 239550315 - Original comment: **
Fredg999 (talk | contribs)
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation"
 
(89 intermediate revisions by 32 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-30 16:18:29 UTC</tt>.<br>
== Theory ==
: The original revision id was <tt>239550315</tt>.<br>
{{Harmonics in equal|28}}
: The revision comment was: <tt></tt><br>
{{Harmonics in equal|28|start=12|collapsed=1|intervals=odd}}
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
----


=Basic properties=
28edo is a multiple of both [[7edo]] and [[14edo]] (and of course [[2edo]] and [[4edo]]). It shares three intervals with [[12edo]]: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it [[tempering_out|tempers out]] the [[greater diesis]] [[648/625|648:625]]. It does not however temper out the [[128/125|128:125]] [[lesser_diesis|lesser diesis]], as 28 is not divisible by 3. It has the same perfect fourth and fifth as 7edo. It also has decent approximations of several septimal intervals, of which [[9/7]] and its inversion [[14/9]] are also found in 14edo. Its approximation to [[5/4]] is unusually good for an edo of this size, being the next convergent to log<sub>2</sub>5 after [[3edo]].
28edo, a multiple of both [[7edo]] and [[14edo]] (and of course [[2edo]] and [[4edo]]), has a step size of 42.857 [[cent]]s. It shares three intervals with [[12edo]]: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it [[tempering out|tempers out]] the [[greater diesis]] [[648_625|648:625]]. It does not however temper out the [[128_125|128:125]] [[lesser diesis]], as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 14edo. It also has decent approximations of several septimal intervals, of which [[9_7|9/7]] and its inversion [[14_9|14/9]] are also found in 14edo.


=Subgroups=
28edo can approximate the [[7-limit|7-limit]] subgroup 2.27.5.21 quite well, and on this subgroup it has the same commas and tunings as 84edo. The temperament corresponding to [[Semicomma_family|orwell temperament]] now has a major third as generator, though as before 225/224, 1728/1715 and 6144/6125 are tempered out. The 225/224-tempered version of the [[Marvel_chords|augmented triad]] has a very low complexity, so many of them appear in the [[MOS scales]] for this temperament, which have sizes 7, 10, 13, 16, 19, 22, 25.
28edo can approximate the [[7-limit]] subgroup 2.27.5.21 quite well, and on this subgroup it has the same commas and tunings as 84edo. The temperament corresponding to [[Semicomma family|orwell temperament]] now has a major third as generator, though as before 225/224, 1728/1715 and 6144/6125 are tempered out. The 225/224-tempered version of the [[augmented triad]] has a very low complexity, so many of them appear in the [[MOS scales]] for this temperament, which have sizes 7, 10, 13, 16, 19, 22, 25.


=Table of intervals=
Another subgroup for which 28edo works quite well is 2.5.11.19.21.27.29.39.41.
The following table compares it to potentially useful nearby [[just intervals]].


|| Step # || ET Cents || Just Interval || Just Cents || Difference (ET minus Just) ||
28edo is the 2nd perfect number EDO.
||  ||  ||  ||  ||  ||
|| 1 || 42.86 ||  ||  ||  ||
|| 2 || 85.71 || 21:20 || 84.47 || 1.24 ||
|| 3 || 128.57 || 14:13 || 128.30 || 0.27 ||
|| 4 || 171.43 || 11:10 || 165.00 || 6.43 ||
|| 5 || 214.29 || 17:15 || 216.69 || -2.40 ||
|| 6 || 257.14 || 7:6 || 266.87 || -9.73 ||
|| 7 || 300 || 6:5 || 315.64 || -15.64 ||
|| 8 || 342.86 || 11:9 || 347.41 || -4.55 ||
|| 9 || 385.71 || 5:4 || 386.31 || -0.60 ||
|| 10 || 428.57 || 9:7 || 435.08 || -6.51 ||
|| 11 || 471.43 || 21:16 || 470.78 || 0.65 ||
|| 12 || 514.29 || 4:3 || 498.04 || 16.25 ||
|| 13 || 557.14 || 11:8 || 551.32 || 5.82 ||
|| 14 || 600 || 7:5 || 582.51 || 17.49 ||
|| 15 || 642.86 || 16:11 || 648.68 || -5.82 ||
|| 16 || 685.71 || 3:2 || 701.96 || -16.25 ||
|| 17 || 728.57 || 32:21 || 729.22 || -0.65 ||
|| 18 || 771.43 || 14:9 || 764.92 || 6.51 ||
|| 19 || 814.29 || 5:8 || 813.68 || 0.61 ||
|| 20 || 857.14 || 18:11 || 852.59 || 4.55 ||
|| 21 || 900 || 5:3 || 884.36 || 15.64 ||
|| 22 || 942.86 || 12:7 || 933.13 || 9.73 ||
|| 23 || 985.71 || 30:17 || 983.31 || 2.40 ||
|| 24 || 1028.57 || 20:11 || 1035.00 || -6.43 ||
|| 25 || 1071.42 || 13:7 || 1071.70 || -0.27 ||
|| 26 || 1114.29 || 40:21 || 1115.53 || -1.24 ||
|| 27 || 1157.14 ||  ||  ||  ||
|| 28 || 1200 || 2:1 || 1200 || 0 ||
=Commas=
28 EDO tempers out the following [[comma]]s. (Note: This assumes the val &lt; 28 44 65 79 97 104 |.)
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||
||= 2187/2048 || | -11 7 &gt; ||&gt; 113.69 ||= Apotome ||=  ||
||= 648/625 || | 3 4 -4 &gt; ||&gt; 62.57 ||= Major Diesis ||= Diminished Comma ||
||= 16875/16384 || | -14 3 4 &gt; ||&gt; 51.12 ||= Negri Comma ||= Double Augmentation Diesis ||
||= 393216/390625 || | 17 1 -8 &gt; ||&gt; 11.45 ||= Wuerschmidt Comma ||=  ||
||= 36/35 || | 2 2 -1 -1 &gt; ||&gt; 48.77 ||= Septimal Quarter Tone ||=  ||
||= 50/49 || | 1 0 2 -2 &gt; ||&gt; 34.98 ||= Tritonic Diesis ||= Jubilisma ||
||= 3125/3087 || | 0 -2 5 -3 &gt; ||&gt; 21.18 ||= Gariboh ||=  ||
||= 126/125 || | 1 2 -3 1 &gt; ||&gt; 13.79 ||= Septimal Semicomma ||= Starling Comma ||
||= 65625/65536 || | -16 1 5 1 &gt; ||&gt; 2.35 ||= Horwell ||=  ||
||= 394839/394762 || | 47 -7 -7 -7 &gt; ||&gt; 0.34 ||= Akjaysma ||= 5\7 Octave Comma ||
||= 176/175 || | 4 0 -2 -1 1 &gt; ||&gt; 9.86 ||= Valinorsma ||=  ||
||= 441/440 || | -3 2 -1 2 -1 &gt; ||&gt; 3.93 ||= Werckisma ||=  ||
||= 4000/3993 || | 5 -1 3 0 -3 &gt; ||&gt; 3.03 ||= Wizardharry ||=  ||


=Some scales=  
== Intervals ==
[[machine5]]
The following table compares it to potentially useful nearby [[just interval]]s.
[[machine6]]
[[machine11]]</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;28edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:10:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt;&lt;a href="#Basic properties"&gt;Basic properties&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Subgroups"&gt;Subgroups&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#Table of intervals"&gt;Table of intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#Commas"&gt;Commas&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Some scales"&gt;Some scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt;
&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;hr /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Basic properties"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Basic properties&lt;/h1&gt;
28edo, a multiple of both &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt; and &lt;a class="wiki_link" href="/14edo"&gt;14edo&lt;/a&gt; (and of course &lt;a class="wiki_link" href="/2edo"&gt;2edo&lt;/a&gt; and &lt;a class="wiki_link" href="/4edo"&gt;4edo&lt;/a&gt;), has a step size of 42.857 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s. It shares three intervals with &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the &lt;a class="wiki_link" href="/greater%20diesis"&gt;greater diesis&lt;/a&gt; &lt;a class="wiki_link" href="/648_625"&gt;648:625&lt;/a&gt;. It does not however temper out the &lt;a class="wiki_link" href="/128_125"&gt;128:125&lt;/a&gt; &lt;a class="wiki_link" href="/lesser%20diesis"&gt;lesser diesis&lt;/a&gt;, as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 14edo. It also has decent approximations of several septimal intervals, of which &lt;a class="wiki_link" href="/9_7"&gt;9/7&lt;/a&gt; and its inversion &lt;a class="wiki_link" href="/14_9"&gt;14/9&lt;/a&gt; are also found in 14edo.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Subgroups&lt;/h1&gt;
28edo can approximate the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; subgroup 2.27.5.21 quite well, and on this subgroup it has the same commas and tunings as 84edo. The temperament corresponding to &lt;a class="wiki_link" href="/Semicomma%20family"&gt;orwell temperament&lt;/a&gt; now has a major third as generator, though as before 225/224, 1728/1715 and 6144/6125 are tempered out. The 225/224-tempered version of the &lt;a class="wiki_link" href="/augmented%20triad"&gt;augmented triad&lt;/a&gt; has a very low complexity, so many of them appear in the &lt;a class="wiki_link" href="/MOS%20scales"&gt;MOS scales&lt;/a&gt; for this temperament, which have sizes 7, 10, 13, 16, 19, 22, 25.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Table of intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Table of intervals&lt;/h1&gt;
The following table compares it to potentially useful nearby &lt;a class="wiki_link" href="/just%20intervals"&gt;just intervals&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;


{| class="wikitable center-all right-2 right-4 right-5 left-6"
|-
! rowspan="2" | Step #
! style="text-align:center;" | ET (e)
! colspan="2" | Just (j)
! rowspan="2" | Delta <br> (e-j)
! rowspan="2" colspan="3" | [[Ups and downs notation]]
|-
! Cents
! Interval
! Cents
|-
| 0
| 0.00
| 1/1
| 0.00
| 0.00
| unison
| 1
| D
|-
| 1
| 42.86
| [[41/40]]
| 42.74
| 0.12
| up-unison
| ^1
| ^D
|-
| 2
| 85.71
| [[21/20]]
| 84.47
| 1.24
| dup 1sn, dud 2nd
| ^^1, vv2
| ^^D, vvE
|-
| 3
| 128.57
| [[14/13]]
| 128.30
| 0.27
| down 2nd
| v2
| vE
|-
| 4
| 171.43
| [[11/10]]
| 165.00
| 6.43
| 2nd
| 2
| E
|-
| 5
| 214.29
| [[17/15]]
| 216.69
| -2.40
| up 2nd
| ^2
| ^E
|-
| 6
| 257.14
| [[7/6]]
| 266.87
| -9.73
| dup 2nd, dud 3rd
| ^^2, vv3
| ^^E, vvF
|-
| 7
| 300.00
| [[6/5]]
| 315.64
| -15.64
| down 3rd
| v3
| vF
|-
| 8
| 342.86
| [[11/9]]
| 347.41
| -4.55
| 3rd
| 3
| F
|-
| 9
| 385.71
| [[5/4]]
| 386.31
| -0.60
| up 3rd
| ^3
| ^F
|-
| 10
| 428.57
| [[9/7]]
| 435.08
| -6.51
| dup 3rd, dud 4th
| ^^3, vv4
| ^^F, vvG
|-
| 11
| 471.43
| [[21/16]]
| 470.78
| 0.65
| down 4th
| v4
| vG
|-
| 12
| 514.29
| [[4/3]]
| 498.04
| 16.25
| 4th
| 4
| G
|-
| 13
| 557.14
| [[11/8]]
| 551.32
| 5.82
| up 4th
| ^4
| ^G
|-
| 14
| 600.00
| [[7/5]]
| 582.51
| 17.49
| dup 4th, dud 5th
| ^^4, vv5
| ^^G, vvA
|-
| 15
| 642.86
| [[16/11]]
| 648.68
| -5.82
| down 5th
| v5
| vA
|-
| 16
| 685.71
| [[3/2]]
| 701.96
| -16.25
| 5th
| 5
| A
|-
| 17
| 728.57
| [[32/21]]
| 729.22
| -0.65
| up 5th
| ^5
| ^A
|-
| 18
| 771.43
| [[14/9]]
| 764.92
| 6.51
| dup 5th, dud 6th
| ^^5, vv6
| ^^A, vvB
|-
| 19
| 814.29
| [[8/5]]
| 813.68
| 0.61
| down 6th
| v6
| vB
|-
| 20
| 857.14
| [[18/11]]
| 852.59
| 4.55
| 6th
| 6
| B
|-
| 21
| 900.00
| [[5/3]]
| 884.36
| 15.64
| up 6th
| ^6
| ^B
|-
| 22
| 942.86
| [[12/7]]
| 933.13
| 9.73
| dup 6th, dud 7th
| ^^6, vv7
| ^^B, vvC
|-
| 23
| 985.71
| [[30/17]]
| 983.31
| 2.40
| down 7th
| v7
| vC
|-
| 24
| 1028.57
| [[20/11]]
| 1035.00
| -6.43
| 7th
| 7
| C
|-
| 25
| 1071.42
| [[13/7]]
| 1071.70
| -0.27
| up 7th
| ^7
| ^C
|-
| 26
| 1114.29
| [[40/21]]
| 1115.53
| -1.24
| dup 7th, dud 8ve
| ^^7, vv8
| ^^C, vvD
|-
| 27
| 1157.14
| [[80/41]]
| 1157.26
| -0.12
| down 8ve
| v8
| vD
|-
| 28
| 1200.00
| [[2/1]]
| 1200.00
| 0.00
| 8ve
| 8
| D
|}


&lt;table class="wiki_table"&gt;
== Notation ==
    &lt;tr&gt;
=== Sagittal notation ===
        &lt;td&gt;Step #&lt;br /&gt;
This notation uses the same sagittal sequence as EDOs [[23edo#Sagittal notation|23]] and [[33edo#Sagittal notation|33]], and is a superset of the notations for EDOs [[14edo#Sagittal notation|14]] and [[7edo#Sagittal notation|7]].
&lt;/td&gt;
        &lt;td&gt;ET Cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Just Interval&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Just Cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Difference (ET minus Just)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;42.86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;85.71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21:20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;84.47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1.24&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;128.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14:13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;128.30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0.27&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;171.43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11:10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165.00&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6.43&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;214.29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17:15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;216.69&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-2.40&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;257.14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7:6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;266.87&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-9.73&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;300&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6:5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;315.64&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-15.64&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;342.86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11:9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;347.41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-4.55&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;385.71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5:4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;386.31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0.60&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;428.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9:7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;435.08&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-6.51&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;471.43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21:16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;470.78&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0.65&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;514.29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4:3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;498.04&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16.25&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;557.14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11:8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;551.32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5.82&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;600&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7:5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;582.51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17.49&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;642.86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16:11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;648.68&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-5.82&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;685.71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3:2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;701.96&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-16.25&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;728.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;32:21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;729.22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0.65&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;771.43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14:9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;764.92&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6.51&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;814.29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5:8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;813.68&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0.61&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;857.14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18:11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;852.59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4.55&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;900&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5:3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;884.36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15.64&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;942.86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12:7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;933.13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9.73&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;985.71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;30:17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;983.31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2.40&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1028.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20:11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1035.00&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-6.43&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1071.42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13:7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1071.70&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0.27&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1114.29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;40:21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1115.53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-1.24&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1157.14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2:1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Commas&lt;/h1&gt;
<imagemap>
28 EDO tempers out the following &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the val &amp;lt; 28 44 65 79 97 104 |.)&lt;br /&gt;
File:28-EDO_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 447 0 607 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 447 106 [[Fractional_3-limit_notation#Bad-fifths_limma-fraction_notation | limma-fraction notation]]
default [[File:28-EDO_Sagittal.svg]]
</imagemap>


== Chord names ==
Ups and downs can be used to name 28edo chords. Because every interval is perfect, the quality can be omitted, and the words major, minor, augmented and diminished are never used.


&lt;table class="wiki_table"&gt;
* 0-8-16 = C E G = C = C or C perfect
    &lt;tr&gt;
* 0-7-16 = C vE G = Cv = C down
        &lt;th&gt;Comma&lt;br /&gt;
* 0-9-16 = C ^E G = C^ = C up
&lt;/th&gt;
* 0-8-15 = C E vG = C(v5) = C down-five
        &lt;th&gt;Monzo&lt;br /&gt;
* 0-9-17 = C ^E ^G = C^(^5) = C up up-five
&lt;/th&gt;
* 0-8-16-24 = C E G B = C7 = C seven
        &lt;th&gt;Value (Cents)&lt;br /&gt;
* 0-8-16-23 = C E G vB = C,v7 = C add down-seven
&lt;/th&gt;
* 0-7-16-24 = C vE G B = Cv,7 = C down add seven
        &lt;th&gt;Name 1&lt;br /&gt;
* 0-7-16-23 = C vE G vB = Cv7 = C down-seven
&lt;/th&gt;
        &lt;th&gt;Name 2&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;2187/2048&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -11 7 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;113.69&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Apotome&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;648/625&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| 3 4 -4 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;62.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Major Diesis&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Diminished Comma&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;16875/16384&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -14 3 4 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;51.12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Negri Comma&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Double Augmentation Diesis&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;393216/390625&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| 17 1 -8 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;11.45&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Wuerschmidt Comma&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;36/35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| 2 2 -1 -1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;48.77&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Septimal Quarter Tone&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;50/49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| 1 0 2 -2 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;34.98&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Tritonic Diesis&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Jubilisma&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;3125/3087&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| 0 -2 5 -3 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;21.18&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Gariboh&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;126/125&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| 1 2 -3 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;13.79&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Septimal Semicomma&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Starling Comma&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;65625/65536&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -16 1 5 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;2.35&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Horwell&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;394839/394762&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| 47 -7 -7 -7 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;0.34&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Akjaysma&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5\7 Octave Comma&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;176/175&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| 4 0 -2 -1 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;9.86&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Valinorsma&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;441/440&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -3 2 -1 2 -1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;3.93&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Werckisma&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;4000/3993&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| 5 -1 3 0 -3 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;3.03&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Wizardharry&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
For a more complete list, see [[Ups and downs notation #Chord names in other EDOs]].
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Some scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Some scales&lt;/h1&gt;
 
&lt;a class="wiki_link" href="/machine5"&gt;machine5&lt;/a&gt;&lt;br /&gt;
== Regular temperament properties ==
&lt;a class="wiki_link" href="/machine6"&gt;machine6&lt;/a&gt;&lt;br /&gt;
=== Rank-2 temperaments ===
&lt;a class="wiki_link" href="/machine11"&gt;machine11&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
{| class="wikitable center-1 center-2"
|-
! Periods<br>per 8ve
! Generator
! Temperaments
|-
| 1
| 1\28
|
|-
| 1
| 3\28
| [[Negri]]
|-
| 1
| 5\28
| [[Machine]]
|-
| 1
| 9\28
| [[Worschmidt]]
|-
| 1
| 11\28
| [[A-team]]
|-
| 1
| 13\28
| [[Thuja]]
|-
| 2
| 1\28
|
|-
| 2
| 3\28
| [[Octokaidecal]]
|-
| 2
| 5\28
| [[Antikythera]]
|-
| 4
| 1\28
|-
| 4
| 2\28
| [[Demolished]]
|-
| 4
| 3\28
|-
| 7
| 1\28
| [[Whitewood]]
|-
| 14
| 1\28
|}
 
=== Commas ===
28et [[tempering out|tempers out]] the following [[comma]]s. This assumes the [[val]] {{val| 28 44 65 79 97 104 }}.
 
{| class="commatable wikitable center-all left-3 right-4 left-6"
|-
! [[Harmonic Limit|Prime<br>limit]]
! [[Ratio]]<ref>Ratios longer than 10 digits are presented by placeholders with informative hints</ref>
! [[Monzo]]
! [[Cents]]
! [[Color name]]
! Name(s)
|-
| 3
| [[2187/2048]]
| {{monzo| -11 7 }}
| 113.69
| Lawa
| Apotome
|-
| 5
| [[648/625]]
| {{monzo| 3 4 -4 }}
| 62.57
| Quadgu
| Diminished comma, major diesis
|-
| 5
| [[16875/16384]]
| {{monzo| -14 3 4 }}
| 51.12
| Laquadyo
| Negri comma, double augmentation diesis
|-
| 5
| [[393216/390625|(12 digits)]]
| {{monzo| 17 1 -8 }}
| 11.45
| Saquadbigu
| [[Würschmidt comma]]
|-
| 7
| [[36/35]]
| {{monzo| 2 2 -1 -1 }}
| 48.77
| Rugu
| Mint comma, septimal quartertone
|-
| 7
| [[50/49]]
| {{monzo| 1 0 2 -2 }}
| 34.98
| Biruyo
| Jubilisma, tritonic diesis
|-
| 7
| [[3125/3087]]
| {{monzo| 0 -2 5 -3 }}
| 21.18
| Triru-aquinyo
| Gariboh comma
|-
| 7
| [[126/125]]
| {{monzo| 1 2 -3 1 }}
| 13.79
| Zotrigu
| Starling comma, septimal semicomma
|-
| 7
| [[65625/65536]]
| {{monzo| -16 1 5 1 }}
| 2.35
| Lazoquinyo
| Horwell comma
|-
| 7
| <abbr title="140737488355328/140710042265625">(30 digits)</abbr>
| {{monzo| 47 -7 -7 -7 }}
| 0.34
| Trisa-seprugu
| [[Akjaysma]]
|-
| 11
| [[176/175]]
| {{monzo| 4 0 -2 -1 1 }}
| 9.86
| Lorugugu
| Valinorsma
|-
| 11
| [[441/440]]
| {{monzo| -3 2 -1 2 -1 }}
| 3.93
| Luzozogu
| Werckisma
|-
| 11
| [[4000/3993]]
| {{monzo| 5 -1 3 0 -3 }}
| 3.03
| Triluyo
| Wizardharry comma
|}
<references/>
 
== Scales ==
28edo is particularly well suited to Whitewood in the same way that [[15edo|15edo]] is for Blackwood, as it has one third that is heavily tempered, but in a familiar way shared with 12edo, while the other one is significantly closer to just. (Contrast with 20 & 21edo, where one third remains the same as in 12, and the other is pushed further away, making the overall sound considerably more xenharmonic) This makes the 5ths more out of tune, but in a useful way, as you can stack major and minor thirds indefinitely until they repeat 4 octaves and 14 notes up, producing one of the largest nonrepeating harmonious chords possible in an edo this low. This produces mode of symmetry scales with two different modes and 4 different keys, making it equally easy to establish any chord in the scale as the root and modulate between them.
 
* Whitewood Major [14] 13131313131313
* Whitewood Minor [14] 31313131313131
* Whitewood Major [21] 121121121121121121121
* Whitewood Minor [21] 211211211211211211211
* Whitewood Diminished [21] 112112112112112112112
* (Whitewood neutral is also theoretically possible, stacking neutral or subminor & supermajor thirds, but in practice that works out as 22222222222222, or 14edo, so it doesn't count as a 28edo scale)
 
If you're looking for something a little more xenharmonic sounding, but still relatively low in badness, Negri [9] & [10] function very similarly to Porcupine [7] & [8] in 15edo, further cementing the idea that 28 is to 15 what 29 is to 12 - a similar structure, but with tempering errors in the opposite direction and slightly greater complexity. Both have a decent selection of familiar major and minor chords clustered towards one end of the scale, while the way they modulate between one-another and the melodies they form is quite alien to people used to the diatonic scale. Most of the compositional notes on the Porcupine page can also be applied here.
 
* Negri [9] 333343333
* Negri [10] 3333333331
* Negri [19] 2121212121212121211
 
However, unlike 15, 28 is complex enough to do recognisable approximations of various diatonic scales and their modes, although they will sound noticeably out of tune and it's obviously not the best method of using the temperament.
 
* Diatonic Major [7] 5434552
* Diatonic Minor [7] 5254345
* Diatonic [[Naive_scale|Naive]] Major [7] 4534543
* Diatonic Naive Minor [7] 4354345
* Diatonic Major [10] 3243432322
* Diatonic Minor [10] 3223243432
* Diatonic Major [12] 322232232322
* Diatonic Minor [12] 322322232232
* Diatonic Major [16] 2122221222122122
* Diatonic Minor [16] 2122212222122212
* Harmonic Minor [7] 5254372
* Harmonic Major [7] 5434372
* Harmonic Minor [8] 52543522, 52543432
* Harmonic Major [8] 54343522, 54343432
* Harmonic Minor [10] 3223243432
* Harmonic Minor [11] 32232433222
* Harmonic Major [9] 324343432
* Harmonic Major [10] 3243433222
* Harmonic Minor [12] 322322232232, 322322233222
* Harmonic Major [12] 322232232232, 322232233222
* Harmonic Minor [16] 2122212222122212, 212221222212121222
* Harmonic Major [16] 2122221222122212, 212221222212121222
* Melodic Minor [7] 5254552
* Melodic Major [7] 5434345
* Melodic Minor [11] 32232432322
* Melodic Major [9] 324343432
* [[Diasem]] (Right-handed) 414434143
* [[Diasem]] (Left-handed) 441434143
* Melodic Minor [12] 322322232322
* Melodic Major [12] 322232232232
* Melodic Minor [16] 2122212222122122
* Melodic Major [16] 2122221222122212
 
Interestingly, as it has a near perfect 21/16, 28edo can also generate Oneirotonic scales (see [[13edo|13edo]]) by stacking it's 11th degree, and they actually sound better in this temperament.
 
* Oneirotonic [5] 65656
* Oneirotonic [8] 55155151
* Oneirotonic [13] 4141141411411
* Oneirotonic [18] 311311131131113111
* Pathological Oneirotonic [23] 21112111121112111121111
* [[machine5]]
* [[machine6]]
* [[machine11]]
* [[machine17]]
 
== Instruments ==
28edo can be played on the [[Lumatone]]. See [[Lumatone mapping for 28edo]].
 
28edo can also be played on a [[14edo]] [[guitar]] with very little effort. See [[User:MisterShafXen/Skip fretting system 28 2 3]].
 
== Music ==
; [[Ambient Esoterica]]
* [https://www.youtube.com/watch?v=d_55LCULX9g ''28 Mansions of the Moon'']
 
; [[Beheld]]
* [https://www.youtube.com/watch?v=0nvrUbw1VLQ ''Haze vibe'']
 
; [[Bryan Deister]]
* [https://www.youtube.com/shorts/--BIQKJ9uvI ''minuet in 28edo''] (2025)
 
; [[duckapus]]
* [https://www.youtube.com/watch?v=F74B9qUpYi8 ''G.27 Variations in 28edo''] (2023)
 
; [[User:Eliora|Eliora]]
* [https://www.youtube.com/watch?v=ghVCGlm7yOk ''Fantasy for Piano'']
 
; [[Kosmorksy]]
* [https://www.youtube.com/watch?v=26UpCbrb3mE ''28 tone Prelude'']
 
; [[Claudi Meneghin]]
* [https://www.youtube.com/watch?v=30XUKJsaINU ''Happy Birthday Canon'', 5-in-1 Canon in 28edo]
* [https://www.youtube.com/watch?v=wYdRAzp8Qi0 ''Canon on Twinkle Twinkle Little Star'', for Baroque Oboe & Viola] (2023) – ([https://www.youtube.com/watch?v=B1KZoLR8UTI for Organ])
 
; [[NullPointerException Music]]
* [https://www.youtube.com/watch?v=vw6l5b3oGk0 ''Edolian - Machinery''] (2020)
 
; [[User:Userminusone|Userminusone]]
* [https://youtu.be/NbR3i45qQVQ ''Purple Skyes'']
 
[[Category:Twentuning]]
[[Category:Listen]]