71edt: Difference between revisions
No edit summary |
m Removing from Category:Edonoi using Cat-a-lot |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
'''71EDT''' is the [[Edt|equal division of the third harmonic]] into 71 parts of 26.7881 [[cent|cents]] each, corresponding to 44.7960 [[edo]] (45edo with 5.4644 cents octave stretch). It is related to the 13-limit temperament which tempers out 540/539, 1575/1573, 2200/2197, and 4375/4374, which is supported by [[45edo]] (45ef val), [[179edo]] (179ef val), [[224edo]], [[269edo]] (269ce val), and [[403edo]] (403def val). | '''71EDT''' is the [[Edt|equal division of the third harmonic]] into 71 parts of 26.7881 [[cent|cents]] each, corresponding to 44.7960 [[edo]] (45edo with 5.4644 cents octave stretch). It is related to the 13-limit temperament which tempers out 540/539, 1575/1573, 2200/2197, and 4375/4374, which is supported by [[45edo]] (45ef val), [[179edo]] (179ef val), [[224edo]], [[269edo]] (269ce val), and [[403edo]] (403def val). | ||
71EDT is the 13th [[ | 71EDT is the 13th [[the Riemann zeta function and tuning#Removing primes|no-twos zeta peak EDT]]. | ||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 71 | |||
| num = 3 | |||
| denom = 1 | |||
| intervals = prime | |||
}} | |||
{{Harmonics in equal | |||
| steps = 71 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
| intervals = prime | |||
}} | |||
== Intervals == | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! Degree | ||
! | ! [[Cent]]s | ||
! | ! [[Hekt]]s | ||
! | ! Corresponding<br />JI intervals | ||
! | ! Comments | ||
|- | |- | ||
! colspan="3" | 0 | ! colspan="3" | 0 | ||
| '''exact [[1/1]]''' | |||
| | |||
|- | |- | ||
| 1 | |||
| 26.7881 | |||
|18.3099 | | 18.3099 | ||
| 66/65 | |||
| | |||
|- | |- | ||
| 2 | |||
| 53.5762 | |||
|36.6197 | | 36.6197 | ||
| 65/63 | |||
| | |||
|- | |- | ||
| 3 | |||
| 80.3643 | |||
|54.9296 | | 54.9296 | ||
| [[22/21]] | |||
| | |||
|- | |- | ||
| 4 | |||
| 107.1524 | |||
|73.2394 | | 73.2394 | ||
| 117/110 | |||
| | |||
|- | |- | ||
| 5 | |||
| 133.9405 | |||
|91.5493 | | 91.5493 | ||
| [[27/25]] | |||
| | |||
|- | |- | ||
| 6 | |||
| 160.7286 | |||
|109.85915 | | 109.85915 | ||
| 169/154 | |||
| | |||
|- | |- | ||
| 7 | |||
| 187.5167 | |||
|128.169 | | 128.169 | ||
| 39/35 | |||
| | |||
|- | |- | ||
| 8 | |||
| 214.3048 | |||
|146.4789 | | 146.4789 | ||
| 147/130, 198/175 | |||
| | |||
|- | |- | ||
| 9 | |||
| 241.0929 | |||
|164.7887 | | 164.7887 | ||
| 169/147 | |||
| | |||
|- | |- | ||
| 10 | |||
| 267.8810 | |||
|183.0986 | | 183.0986 | ||
| [[7/6]] | |||
| | |||
|- | |- | ||
| 11 | |||
| 294.6691 | |||
|201.40845 | | 201.40845 | ||
| 77/65 | |||
| | |||
|- | |- | ||
| 12 | |||
| 321.4572 | |||
|219.7183 | | 219.7183 | ||
| 65/54 | |||
| | |||
|- | |- | ||
| 13 | |||
| 348.2453 | |||
|238.0282 | | 238.0282 | ||
| [[11/9]] | |||
| | |||
|- | |- | ||
| 14 | |||
| 375.0334 | |||
|256.338 | | 256.338 | ||
| 273/220 | |||
| | |||
|- | |- | ||
| 15 | |||
| 401.8215 | |||
|274.6479 | | 274.6479 | ||
| 63/50 | |||
| | |||
|- | |- | ||
| 16 | |||
| 428.6096 | |||
|292.95775 | | 292.95775 | ||
| 169/132 | |||
| | |||
|- | |- | ||
| 17 | |||
| 455.3977 | |||
|311.2676 | | 311.2676 | ||
| [[13/10]] | |||
| | |||
|- | |- | ||
| 18 | |||
| 482.1858 | |||
|329.5775 | | 329.5775 | ||
| 33/25 | |||
| | |||
|- | |- | ||
| 19 | |||
| 508.9739 | |||
|347.8873 | | 347.8873 | ||
| 169/126 | |||
| | |||
|- | |- | ||
| 20 | |||
| 535.7620 | |||
|366.1972 | | 366.1972 | ||
| [[15/11]] | |||
| | |||
|- | |- | ||
| 21 | |||
| 562.5501 | |||
|384.507 | | 384.507 | ||
| [[18/13]] | |||
| | |||
|- | |- | ||
| 22 | |||
| 589.3382 | |||
|402.8169 | | 402.8169 | ||
| ([[45/32]]) | |||
| | |||
|- | |- | ||
| 23 | |||
| 616.1263 | |||
|421.1268 | | 421.1268 | ||
| [[10/7]] | |||
| | |||
|- | |- | ||
| 24 | |||
| 642.9144 | |||
|439.4366 | | 439.4366 | ||
| 132/91 | |||
| | |||
|- | |- | ||
| 25 | |||
| 669.7025 | |||
|457.7465 | | 457.7465 | ||
| 22/15 | |||
| | |||
|- | |- | ||
| 26 | |||
| 696.4906 | |||
|476.0563 | | 476.0563 | ||
| 486/325, 220/147 | |||
| pseudo-[[3/2]] | |||
|- | |- | ||
| 27 | |||
| 723.2787 | |||
|494.3662 | | 494.3662 | ||
| 50/33 | |||
| | |||
|- | |- | ||
| 28 | |||
| 750.0668 | |||
|512.6761 | | 512.6761 | ||
| 54/35 | |||
| | |||
|- | |- | ||
| 29 | |||
| 776.8549 | |||
|530.9859 | | 530.9859 | ||
| 264/169 | |||
| | |||
|- | |- | ||
| 30 | |||
| 803.643 | |||
|549.2958 | | 549.2958 | ||
| 35/22 | |||
| | |||
|- | |- | ||
| 31 | |||
| 830.4311 | |||
|567.6056 | | 567.6056 | ||
| [[21/13]] | |||
| | |||
|- | |- | ||
| 32 | |||
| 857.2192 | |||
|585.9155 | | 585.9155 | ||
| 18/11 | |||
| | |||
|- | |- | ||
| 33 | |||
| 884.0073 | |||
|604.22535 | | 604.22535 | ||
| [[5/3]] | |||
| | |||
|- | |- | ||
| 34 | |||
| 910.7954 | |||
|622.5352 | | 622.5352 | ||
| [[22/13]] | |||
| | |||
|- | |- | ||
| 35 | |||
| 937.5835 | |||
|640.8451 | | 640.8451 | ||
| 12/7 | |||
| | |||
|- | |- | ||
| 36 | |||
| 964.3715 | |||
|659.1549 | | 659.1549 | ||
| 7/4 | |||
| | |||
|- | |- | ||
| 37 | |||
| 991.1596 | |||
|677.4648 | | 677.4648 | ||
| 39/22 | |||
| | |||
|- | |- | ||
| 38 | |||
| 1017.9477 | |||
|695.77465 | | 695.77465 | ||
| [[9/5]] | |||
| | |||
|- | |- | ||
| 39 | |||
| 1044.7358 | |||
|714.0845 | | 714.0845 | ||
| 11/6 | |||
| | |||
|- | |- | ||
| 40 | |||
| 1071.5239 | |||
|732.3944 | | 732.3944 | ||
| [[13/7]] | |||
| | |||
|- | |- | ||
| 41 | |||
| 1098.312 | |||
|750.7042 | | 750.7042 | ||
| 66/35 | |||
| | |||
|- | |- | ||
| 42 | |||
| 1125.1001 | |||
|769.0141 | | 769.0141 | ||
| 21/11 | |||
| | |||
|- | |- | ||
| 43 | |||
| 1151.8882 | |||
|787.3239 | | 787.3239 | ||
| 35/18 | |||
| | |||
|- | |- | ||
| 44 | |||
| 1178.6763 | |||
|805.6338 | | 805.6338 | ||
| 22/13 | |||
| | |||
|- | |- | ||
| 45 | |||
| 1205.4644 | |||
|823.9437 | | 823.9437 | ||
| 441/220, 325/162 | |||
| pseudo-[[octave]] | |||
|- | |- | ||
| 46 | |||
| 1232.2525 | |||
|842.2535 | | 842.2535 | ||
| 45/22 | |||
| | |||
|- | |- | ||
| 47 | |||
| 1259.0406 | |||
|860.5634 | | 860.5634 | ||
| 91/44 | |||
| | |||
|- | |- | ||
| 48 | |||
| 1285.8287 | |||
|878.8732 | | 878.8732 | ||
| [[21/20|21/10]] | |||
| | |||
|- | |- | ||
| 49 | |||
| 1312.6168 | |||
|897.1831 | | 897.1831 | ||
| ([[16/15|32/15]]) | |||
| | |||
|- | |- | ||
| 50 | |||
| 1339.4049 | |||
|915.493 | | 915.493 | ||
| [[13/6]] | |||
| | |||
|- | |- | ||
| 51 | |||
| 1366.193 | |||
|933.8028 | | 933.8028 | ||
| [[11/5]] | |||
| | |||
|- | |- | ||
| 52 | |||
| 1392.9811 | |||
|952.1127 | | 952.1127 | ||
| 378/169 | |||
| | |||
|- | |- | ||
| 53 | |||
| 1419.7692 | |||
|970.4225 | | 970.4225 | ||
| [[25/11]] | |||
| | |||
|- | |- | ||
| 54 | |||
| 1446.5573 | |||
|988.7324 | | 988.7324 | ||
| [[15/13|30/13]] | |||
| | |||
|- | |- | ||
| 55 | |||
| 1473.3454 | |||
|1007.04225 | | 1007.04225 | ||
| 396/169 | |||
| | |||
|- | |- | ||
| 56 | |||
| 1500.1335 | |||
|1025.3521 | | 1025.3521 | ||
| 50/21 | |||
| | |||
|- | |- | ||
| 57 | |||
| 1526.9216 | |||
|1043.662 | | 1043.662 | ||
| 220/91 | |||
| | |||
|- | |- | ||
| 58 | |||
| 1553.7097 | |||
|1061.9718 | | 1061.9718 | ||
| [[27/22|27/11]] | |||
| | |||
|- | |- | ||
| 59 | |||
| 1580.4978 | |||
|1080.2817 | | 1080.2817 | ||
| 162/65 | |||
| | |||
|- | |- | ||
| 60 | |||
| 1607.2859 | |||
|1098.59155 | | 1098.59155 | ||
| 195/77 | |||
| | |||
|- | |- | ||
| 61 | |||
| 1634.0740 | |||
|1161.9014 | | 1161.9014 | ||
| [[9/7|18/7]] | |||
| | |||
|- | |- | ||
| 62 | |||
| 1660.8621 | |||
|1135.2113 | | 1135.2113 | ||
| 441/169 | |||
| | |||
|- | |- | ||
| 63 | |||
| 1687.6502 | |||
|1153.5211 | | 1153.5211 | ||
| 175/66, 130/49 | |||
| | |||
|- | |- | ||
| 64 | |||
| 1714.4383 | |||
|1171.831 | | 1171.831 | ||
| 35/13, 132/49 | |||
| | |||
|- | |- | ||
| 65 | |||
| 1741.2264 | |||
|1190.14085 | | 1190.14085 | ||
| 462/169 | |||
| | |||
|- | |- | ||
| 66 | |||
| 1768.0145 | |||
|1208.4507 | | 1208.4507 | ||
| [[25/18|25/9]] | |||
| | |||
|- | |- | ||
| 67 | |||
| 1794.8026 | |||
|1226.7606 | | 1226.7606 | ||
| 110/39 | |||
| | |||
|- | |- | ||
| 68 | |||
| 1821.5907 | |||
|1245.0704 | | 1245.0704 | ||
| 63/22 | |||
| | |||
|- | |- | ||
| 69 | |||
| 1848.3788 | |||
|1263.3803 | | 1263.3803 | ||
| 189/65 | |||
| | |||
|- | |- | ||
| 70 | |||
| 1875.1669 | |||
|1281.6901 | | 1281.6901 | ||
| 65/22 | |||
| | |||
|- | |- | ||
| 71 | |||
| 1901.9550 | |||
|1300 | | 1300 | ||
| '''exact [[3/1]]''' | |||
| [[3/2|just perfect fifth]] plus an octave | |||
|} | |} | ||