Breedsmic temperaments: Difference between revisions

Xenllium (talk | contribs)
No edit summary
 
(66 intermediate revisions by 9 users not shown)
Line 1: Line 1:
'''Breedsmic temperaments''' are rank two temperaments tempering out the [[breedsma]], {{monzo|-5 -1 -2 4}} = [[2401/2400]]. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12edo, for example) which does not possess a neutral third cannot be tempering out the breedsma.
{{Technical data page}}
This page discusses miscellaneous [[Rank-2 temperament|rank-2]] [[temperament]]s [[tempering out]] the [[breedsma]], {{monzo| -5 -1 -2 4 }} = 2401/2400. This is the amount by which two [[49/40]] intervals exceed [[3/2]], and by which two [[60/49]] intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system ([[12edo]], for example) which does not possess a neutral third cannot be tempering out the breedsma.


It is also the amount by which four stacked 10/7 intervals exceed 25/6: 10000/2401 * 2401/2400 = 10000/2400 = 25/6, which is two octaves above the chromatic semitone, 25/24. We might note also that 49/40 * 10/7 = 7/4 and 49/40 * (10/7)^2 = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40+60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.
The breedsma is also the amount by which four stacked [[10/7]] intervals exceed 25/6: 10000/2401 × 2401/2400 = 10000/2400 = 25/6, which is two octaves above the classic chromatic semitone, [[25/24]]. We might note also that (49/40)(10/7) = 7/4 and (49/40)(10/7)<sup>2</sup> = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40~60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.


Temperaments not discussed here include [[Dicot family #Decimal|decimal]], [[Archytas clan #Beatles|beatles]], [[Meantone family #Squares|squares]], [[Starling temperaments #Myna|myna]], [[Keemic temperaments #Quasitemp|quasitemp]], [[Gamelismic clan #Miracle|miracle]], [[Magic family #Quadrimage|quadrimage]], [[Ragismic microtemperaments #Ennealimmal|ennealimmal]], [[Tetracot family #Octacot|octacot]], [[Kleismic family #Quadritikleismic|quadritikleismic]], [[Schismatic family #Sesquiquartififths|sesquiquartififths]], [[Würschmidt family #Hemiwürschmidt|hemiwürschmidt]], and [[Gammic family #Neptune|neptune]].
Temperaments discussed elsewhere include:
* ''[[Decimal]]'' (+25/24, 49/48 or 50/49) → [[Dicot family #Decimal|Dicot family]]
* ''[[Beatles]]'' (+64/63 or 686/675) → [[Archytas clan #Beatles|Archytas clan]]
* [[Squares]] (+81/80) → [[Meantone family #Squares|Meantone family]]
* [[Myna]] (+126/125) → [[Starling temperaments #Myna|Starling temperaments]]
* [[Miracle]] (+225/224) → [[Gamelismic clan #Miracle|Gamelismic clan]]
* ''[[Octacot]]'' (+245/243) → [[Tetracot family #Octacot|Tetracot family]]
* ''[[Greenwood]]'' (+405/392 or 1323/1280) → [[Greenwoodmic temperaments #Greenwood|Greenwoodmic temperaments]]
* ''[[Quasitemp]]'' (+875/864) → [[Keemic temperaments #Quasitemp|Keemic temperaments]]
* ''[[Quadrasruta]]'' (+2048/2025) → [[Diaschismic family #Quadrasruta|Diaschismic family]]
* ''[[Quadrimage]]'' (+3125/3072) → [[Magic family #Quadrimage|Magic family]]
* ''[[Hemiwürschmidt]]'' (+3136/3125 or 6144/6125) → [[Hemimean clan #Hemiwürschmidt|Hemimean clan]]
* [[Ennealimmal]] (+4375/4374) → [[Ragismic microtemperaments #Ennealimmal|Ragismic microtemperaments]]
* ''[[Quadritikleismic]]'' (+15625/15552) → [[Kleismic family #Quadritikleismic|Kleismic family]]
* [[Harry]] (+19683/19600) → [[Gravity family #Harry|Gravity family]]
* ''[[Sesquiquartififths]]'' (+32805/32768) → [[Schismatic family #Sesquiquartififths|Schismatic family]]
* ''[[Amicable]]'' (+1600000/1594323) → [[Amity family #Amicable|Amity family]]
* ''[[Neptune]]'' (+48828125/48771072) → [[Gammic family #Neptune|Gammic family]]
* ''[[Decoid]]'' (+67108864/66976875) → [[Quintosec family #Decoid|Quintosec family]]
* ''[[Tertiseptisix]]'' (+390625000/387420489) → [[Quartonic family #Tertiseptisix|Quartonic family]]
* ''[[Eagle]]'' (+10485760000/10460353203) → [[Vulture family #Eagle|Vulture family]]


= Hemififths =
== Hemififths ==
{{main|Hemififths}}
{{Main| Hemififths }}


Hemififths tempers out 5120/5103, the hemifamity comma, and 10976/10935, hemimage. It has a neutral third as a generator, with [[99edo|99EDO]] and [[140edo|140EDO]] providing good tunings, and [[239edo|239EDO]] an even better one; and other possible tunings are (160)^(1/25), giving just 5s, the 7 and 9 limit minimax tuning, or 14^(1/13), giving just 7s. It may be called the 41&amp;58 temperament and has wedgie {{multival|2 25 13 35 15 -40}}, which tells us that it requires 25 generator steps to get to the class for major thirds, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17 and 24 note MOS are suited. The full force of this highly accurate temperament can be found using the 41 note MOS or even the 34 note 2MOS.
Hemififths may be described as the {{nowrap| 41 & 58 }} temperament, tempering out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator; its [[ploidacot]] is dicot. [[99edo]] and [[140edo]] provides good tunings, and [[239edo]] an even better one; and other possible tunings are 160<sup>(1/25)</sup>, giving just 5's, the 7- and 9-odd-limit minimax tuning, or 14<sup>(1/13)</sup>, giving just 7's. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17- and 24-note mos are suited. The full force of this highly accurate temperament can be found using the 41-note mos or even the 34-note 2mos{{clarify}}.


By adding 243/242 (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. 99EDO is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding 144/143 brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be 16/13. 99 remains a good tuning choice.
By adding [[243/242]] (which also means [[441/440]], [[540/539]] and [[896/891]]) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. 99edo is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding [[144/143]] brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be [[16/13]]. 99 remains a good tuning choice.


Subgroup: 2.3.5
[[Subgroup]]: 2.3.5.7


[[Comma]]: 858993459200/847288609443
[[Comma list]]: 2401/2400, 5120/5103


[[Mapping]]: [{{val| 1 1 -5 }}, {{val| 0 2 25 }}]
{{Mapping|legend=1| 1 1 -5 -1 | 0 2 25 13 }}


[[POTE generator]]: ~655360/531441 = 351.476
: mapping generators: ~2, ~49/40


{{Val list|legend=1| 41, 58, 99, 239, 338, 915b, 1253bc }}
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.0000, ~49/40 = 351.4464
: [[error map]]: {{val| 0.0000 +0.9379 -0.1531 -0.0224 }}
* [[POTE]]: ~2 = 1200.0000, ~49/40 = 351.4774
: error map: {{val| 0.0000 +0.9999 +0.6221 +0.0307 }}


[[Badness]]: 0.372848
[[Minimax tuning]]:
* [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo| 1/5 0 1/25 }}
: {{monzo list| 1 0 0 0 | 7/5 0 2/25 0 | 0 0 1 0 | 8/5 0 13/25 0 }}
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


== 7-limit ==
[[Algebraic generator]]: (2 + sqrt(2))/2
Subgroup: 2.3.5.7


[[Comma list]]: 2401/2400, 5120/5103
{{Optimal ET sequence|legend=1| 41, 58, 99, 239, 338 }}
 
[[Badness]] (Smith): 0.022243
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 441/440, 896/891
 
Mapping: {{mapping| 1 1 -5 -1 2 | 0 2 25 13 5 }}
 
Optimal tunings:
* CTE: ~2 = 1200.0000, ~11/9 = 351.4289
* POTE: ~2 = 1200.0000, ~11/9 = 351.5206
 
{{Optimal ET sequence|legend=0| 17c, 41, 58, 99e }}


[[Mapping]]: [{{val| 1 1 -5 -1 }}, {{val| 0 2 25 13 }}]
Badness (Smith): 0.023498


{{Multival|legend=1| 2 25 13 35 15 -40 }}
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


[[POTE generator]]: ~49/40 = 351.477
Comma list: 144/143, 196/195, 243/242, 364/363


[[Minimax tuning]]:
Mapping: {{mapping| 1 1 -5 -1 2 4 | 0 2 25 13 5 -1 }}
* 7 and 9-limit minimax
: [{{monzo|1 0 0 0}}, {{monzo|7/5, 0, 2/25, 0}}, {{monzo|0 0 1 0}}, {{monzo|8/5 0 13/25 0}}]
: Eigenvalues: 2, 5


[[Algebraic generator]]: (2 + sqrt(2))/2
Optimal tunings:  
* CTE: ~2 = 1200.0000, ~11/9 = 351.4331
* POTE: ~2 = 1200.0000, ~11/9 = 351.5734


{{Val list|legend=1| 41, 58, 99, 239, 338, 1253bbc, 1591bbc }}
{{Optimal ET sequence|legend=0| 17c, 41, 58, 99ef, 157eff }}


[[Badness]]: 0.022243
Badness (Smith): 0.019090


== 11-limit ==
=== Semihemi ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 243/242, 441/440, 896/891
Comma list: 2401/2400, 3388/3375, 5120/5103
 
Mapping: {{mapping| 2 0 -35 -15 -47 | 0 2 25 13 34 }}


Mapping: [{{val| 1 1 -5 -1 2 }}, {{val| 0 2 25 13 5 }}]
: mapping generators: ~99/70, ~400/231


POTE generator: ~11/9 = 351.521
Optimal tunings:
* CTE: ~99/70 = 600.0000, ~49/40 = 351.4722
* POTE: ~99/70 = 600.0000, ~49/40 = 351.5047


Vals: {{Val list| 17c, 41, 58, 99e }}
{{Optimal ET sequence|legend=0| 58, 140, 198 }}


Badness: 0.023498
Badness (Smith): 0.042487


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 144/143, 196/195, 243/242, 364/363
Comma list: 352/351, 676/675, 847/845, 1716/1715
 
Mapping: {{mapping| 2 0 -35 -15 -47 -37 | 0 2 25 13 34 28 }}


Mapping: [{{val| 1 1 -5 -1 2 4 }}, {{val| 0 2 25 13 5 -1 }}]
Optimal tunings:  
* CTE: ~99/70 = 600.0000, ~49/40 = 351.4674
* POTE: ~99/70 = 600.0000, ~49/40 = 351.5019


POTE generator: ~11/9 = 351.573
{{Optimal ET sequence|legend=0| 58, 140, 198, 536f }}


Vals: {{Val list| 17c, 41, 58, 99ef }}
Badness (Smith): 0.021188


Badness: 0.019090
=== Quadrafifths ===
This has been logged as ''semihemififths'' in Graham Breed's temperament finder, but ''quadrafifths'' arguably makes more sense because it straight-up splits the fifth in four.  


== Semihemi ==
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3388/3375, 9801/9800
Comma list: 2401/2400, 3025/3024, 5120/5103


Mapping: [{{val| 2 0 -35 -15 -47 }}, {{val| 0 2 25 13 34 }}]
Mapping: {{mapping| 1 1 -5 -1 8 | 0 4 50 26 -31 }}


POTE generator: ~49/40 = 351.505
: Mapping generators: ~2, ~243/220


Vals: {{Val list| 58, 140, 198, 734bc, 932bcd, 1130bcd }}
Optimal tunings:  
* CTE: ~2 = 1200.0000, ~243/220 = 175.7284
* POTE: ~2 = 1200.0000, ~243/220 = 175.7378


Badness: 0.042487
{{Optimal ET sequence|legend=0| 41, 157, 198, 239, 676b, 915be }}


=== 13-limit ===
Badness (Smith): 0.040170
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 352/351, 676/675, 847/845, 1716/1715
Comma list: 352/351, 847/845, 2401/2400, 3025/3024


Mapping: [{{val| 2 0 -35 -15 -47 -37 }}, {{val| 0 2 25 13 34 28 }}]
Mapping: {{mapping| 1 1 -5 -1 8 10 | 0 4 50 26 -31 -43 }}


POTE generator: ~49/40 = 351.502
Optimal tunings:
* CTE: ~2 = 1200.0000, ~72/65 = 175.7412
* POTE: ~2 = 1200.0000, ~72/65 = 175.7470


Vals: {{Val list| 58, 140, 198, 536f, 734bcf, 932bcdf }}
{{Optimal ET sequence|legend=0| 41, 157, 198, 437f, 635bcff }}


Badness: 0.021188
Badness (Smith): 0.031144


= Tertiaseptal =
== Tertiaseptal ==
{{main|Tertiaseptal}}
{{Main| Tertiaseptal }}


Aside from the breedsma, tertiaseptal tempers out 65625/65536, the horwell comma, 703125/702464, the meter, and 2100875/2097152, the rainy comma. It can be described as the 31&amp;171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo|171EDO]] makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well.
Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31 &amp; 171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning, although 171edo - [[31edo]] = [[140edo]] also makes sense, and in very high limits 140edo + 171edo = [[311edo]] is especially notable. The 15- or 16-note mos can be used to explore no-threes harmony, and the 31-note mos gives plenty of room for those as well.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 65625/65536
[[Comma list]]: 2401/2400, 65625/65536


[[Mapping]]: [{{val| 1 3 2 3 }}, {{val| 0 -22 5 -3 }}]
{{Mapping|legend=1| 1 3 2 3 | 0 -22 5 -3 }}


{{Multival|legend=1| 22 -5 3 -59 -57 21 }}
: Mapping generators: ~2, ~256/245


[[POTE generator]]: ~256/245 = 77.191
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~256/245 = 77.191


{{Val list|legend=1| 31, 109, 140, 171 }}
{{Optimal ET sequence|legend=1| 31, 109, 140, 171 }}


[[Badness]]: 0.012995
[[Badness]]: 0.012995


== 11-limit ==
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 243/242, 441/440, 65625/65536
Comma list: 243/242, 441/440, 65625/65536


Mapping: [{{val| 1 3 2 3 7 }}, {{val| 0 -22 5 -3 -55 }}]
Mapping: {{mapping| 1 3 2 3 7 | 0 -22 5 -3 -55 }}


POTE generator: ~256/245 = 77.227
Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.227


Vals: {{Val list| 31, 109e, 140e, 171, 202 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109e, 140e, 171, 202 }}


Badness: 0.035576
Badness: 0.035576


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 243/242, 441/440, 625/624, 3584/3575
Comma list: 243/242, 441/440, 625/624, 3584/3575


Mapping: [{{val| 1 3 2 3 7 1 }}, {{val| 0 -22 5 -3 -55 42 }}]
Mapping: {{mapping| 1 3 2 3 7 1 | 0 -22 5 -3 -55 42 }}


POTE generator: ~117/112 = 77.203
Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.203


Vals: {{Val list| 31, 109e, 140e, 171 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109e, 140e, 171 }}


Badness: 0.036876
Badness: 0.036876


=== 17-limit ===
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 243/242, 375/374, 441/440, 625/624, 3584/3575
Comma list: 243/242, 375/374, 441/440, 625/624, 3584/3575


Mapping: [{{val| 1 3 2 3 7 1 1 }}, {{val| 0 -22 5 -3 -55 42 48 }}]
Mapping: {{mapping| 1 3 2 3 7 1 1 | 0 -22 5 -3 -55 42 48 }}


POTE generator: ~68/65 = 77.201
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.201


Vals: {{Val list| 31, 109eg, 140e, 171 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109eg, 140e, 171 }}


Badness: 0.027398
Badness: 0.027398


== Tertia ==
=== Tertia ===
Subgroup:2.3.5.7.11
Subgroup:2.3.5.7.11


Comma list: 385/384, 1331/1323, 1375/1372
Comma list: 385/384, 1331/1323, 1375/1372


Mapping: [{{val| 1 3 2 3 5 }}, {{val| 0 -22 5 -3 -24 }}]
Mapping: {{mapping| 1 3 2 3 5 | 0 -22 5 -3 -24 }}


POTE generator: ~22/21 = 77.173
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.173


Vals: {{Val list| 31, 109, 140, 171e, 311e }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109, 140, 171e, 311e }}


Badness: 0.030171
Badness: 0.030171


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 352/351, 385/384, 625/624, 1331/1323
Comma list: 352/351, 385/384, 625/624, 1331/1323


Mapping: [{{val| 1 3 2 3 5 1 }}, {{val| 0 -22 5 -3 -24 42 }}]
Mapping: {{mapping| 1 3 2 3 5 1 | 0 -22 5 -3 -24 42 }}


POTE generator: ~22/21 = 77.158
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.158


Vals: {{Val list| 31, 109, 140, 311e, 451ee }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109, 140, 311e, 451ee }}


Badness: 0.028384
Badness: 0.028384


=== 17-limit ===
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 352/351, 385/384, 561/560, 625/624, 715/714
Comma list: 352/351, 385/384, 561/560, 625/624, 715/714


Mapping: [{{val| 1 3 2 3 5 1 1 }}, {{val| 0 -22 5 -3 -24 42 48 }}]
Mapping: {{mapping| 1 3 2 3 5 1 1 | 0 -22 5 -3 -24 42 48 }}


POTE generator: ~22/21 = 77.162
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.162


Vals: {{Val list| 31, 109g, 140, 311e, 451ee }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109g, 140, 311e, 451ee }}


Badness: 0.022416
Badness: 0.022416


== Hemitert ==
=== Tertiaseptia ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3025/3024, 65625/65536
Comma list: 2401/2400, 6250/6237, 65625/65536


Mapping: [{{val| 1 3 2 3 6 }}, {{val| 0 -44 10 -6 -79 }}]
Mapping: {{mapping| 1 3 2 3 -4 | 0 -22 5 -3 116 }}


POTE generator: ~45/44 = 38.596
Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.169


Vals: {{Val list| 31, 280, 311, 342 }}
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1695c, 2006bcd, 2317bcd, 2628bccde, 2939bccde, 3250bccde }}


Badness: 0.015633
Badness: 0.056926


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 625/624, 1575/1573, 2401/2400, 4096/4095
Comma list: 625/624, 2080/2079, 2200/2197, 2401/2400


Mapping: [{{val| 1 3 2 3 6 1 }}, {{val| 0 -44 10 -6 -79 84 }}]
Mapping: {{mapping| 1 3 2 3 -4 1 | 0 -22 5 -3 116 42 }}


POTE generator: ~45/44 = 38.588
Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.168


Vals: {{Val list| 31, 280, 311, 964f, 1275f, 1586cff }}
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1073, 1384cf, 1695cf, 2006bcdf }}


Badness: 0.033573
Badness: 0.027474


=== 17-limit ===
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 625/624, 833/832, 1225/1224, 1575/1573, 4096/4095
Comma list: 595/594, 625/624, 833/832, 1156/1155, 2200/2197


Mapping: [{{val| 1 3 2 3 6 1 1 }}, {{val| 0 -44 10 -6 -79 84 96 }}]
Mapping: {{mapping| 1 3 2 3 -4 1 1 | 0 -22 5 -3 116 42 48 }}


POTE generator: ~45/44 = 38.589
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169


Vals: {{Val list| 31, 280, 311, 653f, 964f }}
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}


Badness: 0.025298
Badness: 0.018773


= Harry =
==== 19-limit ====
{{main|Harry}}
Subgroup: 2.3.5.7.11.13.17.19
{{see also|Gravity family #Harry}}


Harry adds cataharry, 19683/19600, to the set of commas. It may be described as the 58&amp;72 temperament, with wedgie {{multival|12 34 20 26 -2 -49}}. The period is half an octave, and the generator 21/20, with generator tunings of 9\130 or 14\202 being good choices. MOS of size 14, 16, 30, 44 or 58 are among the scale choices.
Comma list: 595/594, 625/624, 833/832, 1156/1155, 1216/1215, 2200/2197


Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is {{multival|12 34 20 30 ...}}.
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 | 0 -22 5 -3 116 42 48 -105 }}


Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with {{multival|12 34 20 30 52 ...}} as the octave wedgie. [[130edo|130EDO]] is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169


Subgroup: 2.3.5.7
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1384cfgg, 1695cfgg, 2006bcdfgg }}


[[Comma list]]: 2401/2400, 19683/19600
Badness: 0.017653


[[Mapping]]: [{{val| 2 4 7 7 }}, {{val| 0 -6 -17 -10 }}]
==== 23-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23


{{Multival|legend=1| 12 34 20 26 -2 -49 }}
Comma list: 595/594, 625/624, 833/832, 875/874, 1105/1104, 1156/1155, 1216/1215


[[POTE generator]]: ~21/20 = 83.156
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 | 0 -22 5 -3 116 42 48 -105 117 }}


{{Val list|legend=1| 14c, 58, 72, 130, 202, 534, 736b, 938b }}
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.168


[[Badness]]: 0.034077
Optimal ET sequence: {{Optimal ET sequence| 140, 311, 762g, 1073g, 1384cfgg }}


== 11-limit ==
Badness: 0.015123
Subgroup: 2.3.5.7.11


Comma list: 243/242, 441/440, 4000/3993
==== 29-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29


Mapping: [{{val| 2 4 7 7 9 }}, {{val| 0 -6 -17 -10 -15 }}]
Comma list: 595/594, 625/624, 784/783, 833/832, 875/874, 1015/1014, 1105/1104, 1156/1155


POTE generator: ~21/20 = 83.167
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 | 0 -22 5 -3 116 42 48 -105 117 60 }}


Vals: {{Val list| 14c, 58, 72, 130, 202 }}
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.167


Badness: 0.015867
Optimal ET sequence: {{Optimal ET sequence| 140, 311, 762g, 1073g, 1384cfggj }}


== 13-limit ==
Badness: 0.012181
Subgroup: 2.3.5.7.11.13


Comma list: 243/242, 351/350, 441/440, 676/675
==== 31-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31


Mapping: [{{val| 2 4 7 7 9 11 }}, {{val| 0 -6 -17 -10 -15 -26 }}]
Comma list: 595/594, 625/624, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014


POTE generator: ~21/20 = 83.116
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 | 0 -22 5 -3 116 42 48 -105 117 60 -94 }}


Vals: {{Val list| 58, 72, 130, 332f, 462ef }}
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.169


Badness: 0.013046
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}


== 17-limit ==
Badness: 0.012311
Subgroup: 2.3.5.7.11.13.17


Comma list: 221/220, 243/242, 289/288, 351/350, 441/440
==== 37-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37


Mapping: [{{val| 2 4 7 7 9 11 9 }}, {{val| 0 -6 -17 -10 -15 -26 -6 }}]
Comma list: 595/594, 625/624, 703/702, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014


POTE generator: ~21/20 = 83.168
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 0 | 0 -22 5 -3 116 42 48 -105 117 60 -94 81 }}


Vals: {{Val list| 58, 72, 130, 202g }}
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.170


Badness: 0.012657
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}


= Quasiorwell =
Badness: 0.010949
In addition to 2401/2400, quasiorwell tempers out 29360128/29296875 = {{monzo|22 -1 -10 1}}. It has a wedgie {{multival|38 -3 8 -93 -94 27}}. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31&amp;270 temperament, and as one might expect, 61\270 makes for an excellent tuning choice. Other possibilities are (7/2)^(1/8), giving just 7s, or 384^(1/38), giving pure fifths.


Adding 3025/3024 extends to the 11-limit and gives {{multival|38 -3 8 64 ...}} for the initial wedgie, and as expected, 270 remains an excellent tuning.
==== 41-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41


Subgroup: 2.3.5.7
Comma list: 595/594, 625/624, 697/696, 703/702, 714/713, 784/783, 820/819, 833/832, 875/874, 900/899, 931/930


[[Comma list]]: 2401/2400, 29360128/29296875
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 0 6 | 0 -22 5 -3 116 42 48 -105 117 60 -94 81 -10 }}


[[Mapping]]: [{{val|1 31 0 9}}, {{val|0 -38 3 -8}}]
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.169


[[POTE generator]]: ~1024/875 = 271.107
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}


{{Val list|legend=1| 31, 177, 208, 239, 270, 571, 841, 1111 }}
Badness: 0.009825


[[Badness]]: 0.035832
=== Hemitert ===
Subgroup: 2.3.5.7.11


== 11-limit ==
Comma list: 2401/2400, 3025/3024, 65625/65536
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3025/3024, 5632/5625
Mapping: {{mapping| 1 3 2 3 6 | 0 -44 10 -6 -79 }}


Mapping: [{{val|1 31 0 9 53}}, {{val|0 -38 3 -8 -64}}]
: Mapping generators: ~2, ~45/44


POTE generator: ~90/77 = 271.111
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.596


Vals: {{Val list| 31, 208, 239, 270 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 280, 311, 342 }}


Badness: 0.017540
Badness: 0.015633


== 13-limit ==
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Commas: 1001/1000, 1716/1715, 3025/3024, 4096/4095
Comma list: 625/624, 1575/1573, 2401/2400, 4096/4095
 
Mapping: {{mapping| 1 3 2 3 6 1 | 0 -44 10 -6 -79 84 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.588


Mapping: [{{val|1 31 0 9 53 -59}}, {{val|0 -38 3 -8 -64 81}}]
Optimal ET sequence: {{Optimal ET sequence| 31, 280, 311, 964f, 1275f, 1586cff }}


POTE generator: ~90/77 = 271.107
Badness: 0.033573


Vals: {{Val list| 31, 239, 270, 571, 841, 1111 }}
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17


Badness: 0.017921
Comma list: 625/624, 833/832, 1225/1224, 1575/1573, 4096/4095
 
Mapping: {{mapping| 1 3 2 3 6 1 1 | 0 -44 10 -6 -79 84 96 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.589
 
Optimal ET sequence: {{Optimal ET sequence| 31, 280, 311, 653f, 964f }}
 
Badness: 0.025298
 
=== Semitert ===
Subgroup: 2.3.5.7.11
 
Comma list: 2401/2400, 9801/9800, 65625/65536
 
Mapping: {{mapping| 2 6 4 6 1 | 0 -22 5 -3 46 }}
 
: Mapping generators: ~99/70, ~256/245
 
Optimal tuning (POTE): ~99/70 = 1\2, ~256/245 = 77.193
 
Optimal ET sequence: {{Optimal ET sequence| 62e, 140, 202, 342 }}


= Decoid =
Badness: 0.025790
{{see also|Qintosec family #Decoid}}


In addition to 2401/2400, decoid tempers out 67108864/66976875 to temper 15/14 into one degree of [[10edo|10 EDO]]. Either 8/7 or 16/15 can be used its generator. It may be described as the 130&amp;270 temperament, and as one might expect, 181\940 or 233\1210 makes for an excellent tuning choice. It is also described as an extension of the [[Qintosec family|qintosec temperament]].
== Quasiorwell ==
In addition to 2401/2400, quasiorwell tempers out the quasiorwellisma, 29360128/29296875 = {{monzo| 22 -1 -10 1 }}. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31 &amp; 270 temperament, and as one might expect, 61\270 makes for an excellent tuning choice. Other possibilities are (7/2)<sup>1/8</sup>, giving just 7's, or 384<sup>1/38</sup>, giving pure fifths.


Subgroup: 2.3.5.7
Adding 3025/3024 extends to the 11-limit and as expected, 270 remains an excellent tuning.


[[Comma list]]: 2401/2400, 67108864/66976875
[[Subgroup]]: 2.3.5.7


[[Mapping]]: [{{val|10 0 47 36}}, {{val|0 2 -3 -1}}]
[[Comma list]]: 2401/2400, 29360128/29296875


{{Multival|legend=1|20 -30 -10 -94 -72 61}}
{{Mapping|legend=1| 1 31 0 9 | 0 -38 3 -8 }}


[[POTE generator]]: ~8/7 = 231.099
: Mapping generators: ~2, ~875/512


{{Val list|legend=1| 10, 130, 270, 2020c, 2290c, 2560c, 2830bc, 3100bcc, 3370bcc, 3640bcc }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1024/875 = 271.107


[[Badness]]: 0.033902
{{Optimal ET sequence|legend=1| 31, 177, 208, 239, 270, 571, 841, 1111 }}


== 11-limit ==
[[Badness]]: 0.035832
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 5832/5825, 9801/9800
Comma list: 2401/2400, 3025/3024, 5632/5625


Mapping: [{{val|10 0 47 36 98}}, {{val|0 2 -3 -1 -8}}]
Mapping: {{mapping| 1 31 0 9 53 | 0 -38 3 -8 -64 }}


POTE generator: ~8/7 = 231.070
Optimal tuning (POTE): ~2 = 1\1, ~90/77 = 271.111


Vals: {{Val list| 10e, 130, 270, 670, 940, 1210, 2150c }}
Optimal ET sequence: {{Optimal ET sequence| 31, 208, 239, 270 }}


Badness: 0.018735
Badness: 0.017540


== 13-limit ==
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 676/675, 1001/1000, 1716/1715, 4225/4224
Comma list: 1001/1000, 1716/1715, 3025/3024, 4096/4095


Mapping: [{{val|10 0 47 36 98 37}}, {{val|0 2 -3 -1 -8 0}}]
Mapping: {{mapping| 1 31 0 9 53 -59 | 0 -38 3 -8 -64 81 }}


POTE generator: ~8/7 = 231.083
Optimal tuning (POTE): ~2 = 1\1, ~90/77 = 271.107


Vals: {{Val list| 10e, 130, 270, 940, 1210f, 1480cf }}
Optimal ET sequence: {{Optimal ET sequence| 31, 239, 270, 571, 841, 1111 }}


Badness: 0.013475
Badness: 0.017921
 
== Neominor ==
The generator for neominor temperament is tridecimal minor third [[13/11]], also known as ''Neo-gothic minor third''.


= Neominor =
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7


[[Comma list]]: 2401/2400, 177147/175616
[[Comma list]]: 2401/2400, 177147/175616


[[Mapping]]: [{{val|1 3 12 8}}, {{val|0 -6 -41 -22}}]
{{Mapping|legend=1| 1 3 12 8 | 0 -6 -41 -22 }}


{{Multival|legend=1|6 41 22 51 18 -64}}
: Mapping generators: ~2, ~189/160


[[POTE generator]]: ~189/160 = 283.280
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~189/160 = 283.280


{{Val list|legend=1| 72, 161, 233, 305 }}
{{Optimal ET sequence|legend=1| 72, 161, 233, 305 }}


[[Badness]]: 0.088221
[[Badness]]: 0.088221


== 11-limit ==
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 243/242, 441/440, 35937/35840
Comma list: 243/242, 441/440, 35937/35840


Mapping: [{{val|1 3 12 8 7}}, {{val|0 -6 -41 -22 -15}}]
Mapping: {{mapping| 1 3 12 8 7 | 0 -6 -41 -22 -15 }}


POTE generator: ~33/28 = 283.276
Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 283.276


Vals: {{Val list| 72, 161, 233, 305 }}
Optimal ET sequence: {{Optimal ET sequence| 72, 161, 233, 305 }}


Badness: 0.027959
Badness: 0.027959


== 13-limit ==
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 169/168, 243/242, 364/363, 441/440
Comma list: 169/168, 243/242, 364/363, 441/440


Mapping: [{{val|1 3 12 8 7 7}}, {{val|0 -6 -41 -22 -15 -14}}]
Mapping: {{mapping| 1 3 12 8 7 7 | 0 -6 -41 -22 -15 -14 }}


POTE generator: ~13/11 = 283.294
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 283.294


Vals: {{Val list| 72, 161f, 233f }}
Optimal ET sequence: {{Optimal ET sequence| 72, 161f, 233f }}


Badness: 0.026942
Badness: 0.026942


= Emmthird =
== Emmthird ==
The generator for emmthird temperament is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.
The generator for emmthird is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 14348907/14336000
[[Comma list]]: 2401/2400, 14348907/14336000


[[Mapping]]: [{{val|1 -3 -17 -8}}, {{val|0 14 59 33}}]
{{Mapping|legend=1| 1 11 42 25 | 0 -14 -59 -33 }}


{{Multival|legend=1|14 59 33 61 13 -89}}
: Mapping generators: ~2, ~2187/1372


[[POTE generator]]: ~2744/2187 = 392.988
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2744/2187 = 392.988


{{Val list|legend=1| 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d }}
{{Optimal ET sequence|legend=1| 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d }}


[[Badness]]: 0.016736
[[Badness]]: 0.016736


= Quinmite =
=== 11-limit ===
Subgroup: 2.3.5.7
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 441/440, 1792000/1771561
 
Mapping: {{mapping| 1 11 42 25 27 | 0 -14 -59 -33 -35 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~1372/1089 = 392.991
 
Optimal ET sequence: {{Optimal ET sequence| 58, 113, 171 }}
 
Badness: 0.052358
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 243/242, 364/363, 441/440, 2200/2197
 
Mapping: {{mapping| 1 11 42 25 27 38 | 0 -14 -59 -33 -35 -51 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~180/143 = 392.989
 
Optimal ET sequence: {{Optimal ET sequence| 58, 113, 171 }}
 
Badness: 0.026974
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 243/242, 364/363, 441/440, 595/594, 2200/2197
 
Mapping: {{mapping| 1 -3 -17 -8 -8 -13 9 | 0 14 59 33 35 51 -15 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~64/51 = 392.985
 
Optimal ET sequence: {{Optimal ET sequence| 58, 113, 171 }}
 
Badness: 0.023205
 
== Quinmite ==
The generator for quinmite is quasi-tempered minor third [[25/21]], flatter than 6/5 by the starling comma, [[126/125]]. It is also generated by 1/5 of minor tenth 12/5, and its name is a play on the words "quintans" (Latin for "one fifth") and "minor tenth", given by [[Petr Pařízek]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref><ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_104268.html Yahoo! Tuning Group | ''2D temperament names, part I -- reclassified temperaments from message #101780'']</ref>.
 
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 1959552/1953125
[[Comma list]]: 2401/2400, 1959552/1953125


[[Mapping]]: [{{val|1 -7 -5 -3}}, {{val|0 34 29 23}}]
{{Mapping|legend=1| 1 27 24 20 | 0 -34 -29 -23 }}


{{Multival|legend=1|34 29 23 -33 -59 -28}}
: Mapping generators: ~2, ~42/25


[[POTE generator]]: ~25/21 = 302.997
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 302.997


{{Val list|legend=1| 95, 99, 202, 301, 400, 701, 1101c, 1802c, 2903cc }}
{{Optimal ET sequence|legend=1| 99, 202, 301, 400, 701, 1101c, 1802c, 2903cc }}


[[Badness]]: 0.037322
[[Badness]]: 0.037322


= Unthirds =
== Unthirds ==
Subgroup: 2.3.5.7
Despite the complexity of its mapping, unthirds is an important temperament to the structure of the [[11-limit]]; this is hinted at by unthirds' representation as the [[72edo|72]] & [[311edo|311]] temperament, the [[Temperament merging|join]] of two tuning systems well-known for their high accuracy in the 11-limit and [[41-limit]] respectively. It is generated by the interval of [[14/11]] ('''un'''decimal major '''third''', hence the name) tuned less than a cent flat, and the 23-note [[MOS]] this interval generates serves as a well temperament of, of all things, [[23edo]]. The 49-note MOS is needed to access the 3rd, 5th, 7th, and 11th harmonics, however.
 
The commas it tempers out include the [[breedsma]] (2401/2400), the [[lehmerisma]] (3025/3024), the [[pine comma]] (4000/3993), the [[unisquary comma]] (12005/11979), the [[argyria]] (41503/41472), and 42875/42768, all of which appear individually in various 11-limit systems. It is also notable that there is a [[restriction]] of the temperament to the 2.5/3.7/3.11/3 [[fractional subgroup]] that tempers out 3025/3024 and 12005/11979, which is of considerably less complexity, and which is shared with [[sqrtphi]] (whose generator is tuned flat of 72edo's).
 
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 68359375/68024448
[[Comma list]]: 2401/2400, 68359375/68024448


[[Mapping]]: [{{val|1 -13 -14 -9}}, {{val|0 42 47 34}}]
{{Mapping|legend=1| 1 29 33 25 | 0 -42 -47 -34 }}


{{Multival|legend=1|42 47 34 -23 -64 -53}}
: Mapping generators: ~2, ~6125/3888


[[POTE generator]]: ~3969/3125 = 416.717
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3969/3125 = 416.717


{{Val list|legend=1| 72, 167, 239, 311, 694, 1005c }}
{{Optimal ET sequence|legend=1| 72, 167, 239, 311, 694, 1005c }}


[[Badness]]: 0.075253
[[Badness]]: 0.075253


== 11-limit ==
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3025/3024, 4000/3993
Comma list: 2401/2400, 3025/3024, 4000/3993


Map: [{{val|1 -13 -14 -9 -8}}, {{val|0 42 47 34 33}}]
Mapping: {{mapping| 1 29 33 25 25 | 0 -42 -47 -34 -33 }}


POTE generator: ~14/11 = 416.718
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.718


Vals: {{Val list| 72, 167, 239, 311, 1316c }}
Optimal ET sequence: {{Optimal ET sequence| 72, 167, 239, 311 }}


Badness: 0.022926
Badness: 0.022926


== 13-limit ==
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400
Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400


Mapping: [{{val|1 -13 -14 -9 -9 -47}}, {{val|0 42 47 34 33 146}}]
Mapping: {{mapping| 1 29 33 25 25 99 | 0 -42 -47 -34 -33 -146 }}


POTE generator: ~14/11 = 416.716
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.716


Vals: {{Val list| 72, 311, 694, 1005c, 1699cd }}
Optimal ET sequence: {{Optimal ET sequence| 72, 239f, 311, 694, 1005c }}


Badness: 0.020888
Badness: 0.020888


= Newt =
== Newt ==
Commas: 2401/2400, 33554432/33480783
Newt has a generator of a neutral third (0.2 cents flat of [[49/40]]) and tempers out the [[garischisma]]. It can be described as the 41 & 270 temperament, and extends naturally to the no-17 19-limit, a.k.a. '''neonewt'''. [[270edo]] and [[311edo]] are obvious tuning choices, but [[581edo]] and especially [[851edo]] work much better.


POTE generator: ~49/40 = 351.113
[[Subgroup]]: 2.3.5.7


Map: [&lt;1 1 19 11|, &lt;0 2 -57 -28|]
[[Comma list]]: 2401/2400, 33554432/33480783


Wedgie: &lt;&lt;2 -57 -28 -95 -50 95||
{{Mapping|legend=1| 1 1 19 11 | 0 2 -57 -28 }}


EDOs: 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bc
: mapping generators: ~2, ~49/40


Badness: 0.0419
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 351.113


== 11-limit ==
{{Optimal ET sequence|legend=1| 41, 147c, 188, 229, 270, 1121, 1391, 1661, 1931, 2201 }}
Commas: 2401/2400, 3025/3024, 19712/19683


POTE generator: ~49/40 = 351.115
[[Badness]]: 0.041878


Map: [&lt;1 1 19 11 -10|, &lt;0 2 -57 -28 46|]
=== 11-limit ===
Subgroup: 2.3.5.7.11


EDOs: 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b
Comma list: 2401/2400, 3025/3024, 19712/19683


Badness: 0.0195
Mapping: {{mapping| 1 1 19 11 -10 | 0 2 -57 -28 46 }}


== 13-limit ==
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.115
Commas: 2080/2079, 2401/2400, 3025/3024, 4096/4095


POTE genertaor: ~49/40 = 351.117
Optimal ET sequence: {{Optimal ET sequence| 41, 147ce, 188, 229, 270, 581, 851, 1121, 1972 }}


Map: [&lt;1 1 19 11 -10 -20|, &lt;0 2 -57 -28 46 81|]
Badness: 0.019461


EDOs: 41, 229, 270, 581, 851, 2283b, 3134b
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Badness: 0.0138
Comma list: 2080/2079, 2401/2400, 3025/3024, 4096/4095


= Amicable =
Mapping: {{mapping| 1 1 19 11 -10 -20 | 0 2 -57 -28 46 81 }}
{{see also| Amity family }}


Commas: 2401/2400, 1600000/1594323
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.117


POTE generator: ~21/20 = 84.880
Optimal ET sequence: {{Optimal ET sequence| 41, 147cef, 188f, 229, 270, 581, 851, 2283b, 3134b }}


Map: [&lt;1 3 6 5|, &lt;0 -20 -52 -31|]
Badness: 0.013830


Wedgie: &lt;&lt;20 52 31 36 -7 -74||
=== 2.3.5.7.11.13.19 subgroup (neonewt) ===
Subgroup: 2.3.5.7.11.13.19


EDOs: 99, 212, 311, 410, 1131, 1541b
Comma list: 1216/1215, 1540/1539, 1729/1728, 2080/2079, 2401/2400


Badness: 0.0455
Mapping: {{mapping| 1 1 19 11 -10 -20 18 | 0 2 -57 -28 46 81 -47 }}


= Septidiasemi =
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.117
Commas: 2401/2400, 2152828125/2147483648


POTE generator: ~15/14 = 119.297
Optimal ET sequence: {{Optimal ET sequence| 41, 147cefh, 188f, 229, 270, 581, 851, 3134b, 3985b, 4836bb }}


Map: [&lt;1 -1 6 4|, &lt;0 26 -37 -12|]
== Septidiasemi ==
{{Main| Septidiasemi }}


Wedgie: &lt;&lt;26 -37 -12 -119 -92 76||
Aside from 2401/2400, [[septidiasemi]] tempers out 2152828125/2147483648 in the 7-limit. It is so named because the generator is a "septimal diatonic semitone" (0.15 cents flat of [[15/14]]). It is an excellent tuning for 2.3.5.7.13 and 2.3.5.7.13.17 subgroups rather than full 13- and 17-limit.


EDOs: 10, 151, 161, 171, 3581bcd, 3752bcd, 3923bcd, 4094bcd, 4265bcd, 4436bcd, 4607bcd
[[Subgroup]]: 2.3.5.7


Badness: 0.0441
[[Comma list]]: 2401/2400, 2152828125/2147483648


=Maviloid=
{{Mapping|legend=1| 1 25 -31 -8 | 0 -26 37 12 }}
{{see also| Ragismic microtemperaments #Parakleismic }}


Commas: 2401/2400, 1224440064/1220703125
: Mapping generators: ~2, ~28/15


POTE generator: ~1296/875 = 678.810
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~15/14 = 119.297


Map: [&lt;1 31 34 26|, &lt;0 -52 -56 -41|]
{{Optimal ET sequence|legend=1| 10, 151, 161, 171, 3581bcdd, 3752bcdd, 3923bcdd, 4094bcdd, 4265bccdd, 4436bccdd, 4607bccdd }}


Wedgie: &lt;&lt;52 56 41 -32 -81 -62||
[[Badness]]: 0.044115


EDOs: 76, 99, 274, 373, 472, 571, 1043, 1614
=== Sedia ===
The ''sedia'' temperament (10&amp;161) is an 11-limit extension of the septidiasemi, which tempers out 243/242 and 441/440.


Badness: 0.0576
Subgroup: 2.3.5.7.11


=Subneutral=
Comma list: 243/242, 441/440, 939524096/935859375
Commas: 2401/2400, 274877906944/274658203125


POTE generator: ~57344/46875 = 348.301
Mapping: {{mapping| 1 25 -31 -8 62 | 0 -26 37 12 -65 }}


Map: [&lt;1 19 0 6}, &lt;0 -60 8 -11|]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.279


Wedgie: &lt;&lt;60 -8 11 -152 -151 48||
Optimal ET sequence: {{Optimal ET sequence| 10, 151, 161, 171, 332 }}


EDOs: 31, 348, 379, 410, 441, 1354, 1795, 2236
Badness: 0.090687


Badness: 0.0458
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


=Osiris=
Comma list: 243/242, 441/440, 2200/2197, 3584/3575
Commas: 2401/2400, 31381059609/31360000000


POTE generator: ~2800/2187 = 428.066
Mapping: {{mapping| 1 25 -31 -8 62 1 | 0 -26 37 12 -65 3 }}


Map: [&lt;1 13 33 21|, &lt;0 -32 -86 -51|]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281


Wedgie: &lt;&lt;32 86 51 62 -9 -123||
Optimal ET sequence: {{Optimal ET sequence| 10, 151, 161, 171, 332, 835eeff }}


EDOs: 157, 171, 1012, 1183, 1354, 1525, 1696, 6955d
Badness: 0.045773


Badness: 0.0283
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17


=Gorgik=
Comma list: 243/242, 441/440, 833/832, 2200/2197, 3584/3575
Commas: 2401/2400, 28672/28125


POTE generator: ~8/7 = 227.512
Mapping: {{mapping| 1 25 -31 -8 62 1 23 | 0 -26 37 12 -65 3 -21 }}


Map: [&lt;1 5 1 3|, &lt;0 -18 7 -1|]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281


Wedgie: &lt;&lt;18 -7 1 -53 -49 22||
Optimal ET sequence: {{Optimal ET sequence| 10, 151, 161, 171, 332, 503ef, 835eeff }}


EDOs: 21, 37, 58, 153bc, 211bcd, 269bcd
Badness: 0.027322


Badness: 0.1584
== Maviloid ==
{{See also| Ragismic microtemperaments #Parakleismic }}


==11-limit==
[[Subgroup]]: 2.3.5.7
Commas: 176/175, 2401/2400, 2560/2541


POTE generator: ~8/7 = 227.500
[[Comma list]]: 2401/2400, 1224440064/1220703125


Map: [&lt;1 5 1 3 1|, &lt;0 -18 7 -1 13|]
{{Mapping|legend=1| 1 31 34 26 | 0 -52 -56 -41 }}


EDOs: 21, 37, 58, 153bce, 211bcde, 269bcde
: Mapping generators: ~2, ~1296/875


Badness: 0.059
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1296/875 = 678.810


==13-limit==
{{Optimal ET sequence|legend=1| 76, 99, 274, 373, 472, 571, 1043, 1614 }}
Commas: 176/175, 196/195, 364/363, 512/507


POTE generator: ~8/7 = 227.493
[[Badness]]: 0.057632


Map: [&lt;1 5 1 3 1 2|, &lt;0 -18 7 -1 13 9|]
== Subneutral ==
{{See also| Luna family }}


EDOs: 21, 37, 58, 153bcef, 211bcdef
[[Subgroup]]: 2.3.5.7


Badness: 0.0322
[[Comma list]]: 2401/2400, 274877906944/274658203125


=Fibo=
{{Mapping|legend=1| 1 19 0 6 | 0 -60 8 -11 }}
Commas: 2401/2400, 341796875/339738624


POTE generator: ~125/96 = 454.310
: Mapping generators: ~2, ~57344/46875


Map: [&lt;1 19 8 10|, &lt;0 -46 -15 -19|]
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~57344/46875 = 348.301


Wedgie: &lt;&lt;46 15 19 -83 -99 2||
{{Optimal ET sequence|legend=1| 31, …, 348, 379, 410, 441, 1354, 1795, 2236 }}


EDOs: 37, 103, 140, 243, 383, 1009cd, 1392cd
[[Badness]]: 0.045792


Badness: 0.1005
== Osiris ==
{{See also| Metric microtemperaments #Geb }}


==11-limit==
[[Subgroup]]: 2.3.5.7
Commas: 385/384, 1375/1372, 43923/43750


POTE generator: ~100/77 = 454.318
[[Comma list]]: 2401/2400, 31381059609/31360000000


Map: [&lt;1 19 8 10 8|, &lt;0 -46 -15 -19 -12|]
{{Mapping|legend=1| 1 13 33 21 | 0 -32 -86 -51 }}


EDOs: 37, 103, 140, 243e
: Mapping generators: ~2, ~2800/2187


Badness: 0.0565
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2800/2187 = 428.066


==13-limit==
{{Optimal ET sequence|legend=1| 157, 171, 1012, 1183, 1354, 1525, 1696 }}
Commas: 385/384, 625/624, 847/845, 1375/1372


POTE generator: ~13/10 = 454.316
[[Badness]]: 0.028307


Map: [&lt;1 19 8 10 8 9|, &lt;0 -46 -15 -19 -12 -14|]
== Gorgik ==
[[Subgroup]]: 2.3.5.7


EDOs: 37, 103, 140, 243e
[[Comma list]]: 2401/2400, 28672/28125


Badness: 0.0274
{{Mapping|legend=1| 1 5 1 3 | 0 -18 7 -1 }}


=Mintone=
: Mapping generators: ~2, ~8/7
In addition to 2401/2400, mintone tempers out 177147/175000 = |-3 11 -5 -1&gt; in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58&amp;103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice.


Commas: 2401/2400, 177147/175000
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 227.512


POTE generator: ~10/9 = 186.343
{{Optimal ET sequence|legend=1| 21, 37, 58, 153bc, 211bccd, 269bccd }}


Map: [&lt;1 5 9 7|, &lt;0 -22 -43 -27|]
[[Badness]]: 0.158384


EDOs: 45, 58, 103, 161, 586b, 747bc, 908bc
=== 11-limit ===
Subgroup: 2.3.5.7.11


Badness: 0.12567
Comma list: 176/175, 2401/2400, 2560/2541


==11-limit==
Mapping: {{mapping| 1 5 1 3 1 | 0 -18 7 -1 13 }}
Commas: 243/242, 441/440, 43923/43750


POTE generator: ~10/9 = 186.345
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 227.500


Map: [&lt;1 5 9 7 12|, &lt;0 -22 -43 -27 -55|]
Optimal ET sequence: {{Optimal ET sequence| 21, 37, 58, 153bce, 211bccdee, 269bccdee }}


EDOs: 58, 103, 161, 425b, 586b, 747bc
Badness: 0.059260


Badness: 0.0400
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 176/175, 196/195, 364/363, 512/507
 
Mapping: {{mapping| 1 5 1 3 1 2 | 0 -18 7 -1 13 9 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 227.493
 
Optimal ET sequence: {{Optimal ET sequence| 21, 37, 58, 153bcef, 211bccdeeff }}


==13-limit==
Badness: 0.032205
Commas: 243/242, 351/350, 441/440, 847/845


POTE generator: ~10/9 = 186.347
== Fibo ==
[[Subgroup]]: 2.3.5.7


Map: [&lt;1 5 9 7 12 11|, &lt;0 -22 -43 -27 -55 -47|]
[[Comma list]]: 2401/2400, 341796875/339738624


EDOs: 58, 103, 161
{{Mapping|legend=1| 1 19 8 10 | 0 -46 -15 -19 }}


Badness: 0.0218
: Mapping generators: ~2, ~125/96


==17-limit==
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/96 = 454.310
Commas: 243/242, 351/350, 441/440, 561/560, 847/845


POTE generator: ~10/9 = 186.348
{{Optimal ET sequence|legend=1| 37, 66b, 103, 140, 243, 383, 1009cd, 1392ccd }}


Map: [&lt;1 5 9 7 12 11 3|, &lt;0 -22 -43 -27 -55 -47 7|]
Badness: 0.100511


EDOs: 58, 103, 161, 264
=== 11-limit ===
Subgroup: 2.3.5.7.11


=Catafourth=
Comma list: 385/384, 1375/1372, 43923/43750
{{see also| Sensipent family }}


Commas: 2401/2400, 78732/78125
Mapping: {{mapping| 1 19 8 10 8 | 0 -46 -15 -19 -12 }}


POTE generator: ~250/189 = 489.235
Optimal tuning (POTE): ~2 = 1\1, ~100/77 = 454.318


Map: [&lt;1 13 17 13|, &lt;0 -28 -36 -25|]
Optimal ET sequence: {{Optimal ET sequence| 37, 66b, 103, 140, 243e }}


Wedgie: &lt;&lt;28 36 25 -8 -39 -43||
Badness: 0.056514


EDOs: 27, 76, 103, 130
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Badness: 0.0796
Comma list: 385/384, 625/624, 847/845, 1375/1372


==11-limit==
Mapping: {{mapping| 1 19 8 10 8 9 | 0 -46 -15 -19 -12 -14 }}
Commas: 243/242, 441/440, 78408/78125


POTE generator: ~250/189 = 489.252
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 454.316


Map: [&lt;1 13 17 13 32|, &lt;0 -28 -36 -25 -70|]
Optimal ET sequence: {{Optimal ET sequence| 37, 66b, 103, 140, 243e }}


EDOs: 103, 130, 233, 363, 493e, 856be
Badness: 0.027429


Badness: 0.0368
== Mintone ==
In addition to 2401/2400, mintone tempers out 177147/175000 = {{monzo| -3 11 -5 -1 }} in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58 &amp; 103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice.


==13-limit==
[[Subgroup]]: 2.3.5.7
Commas: 243/242, 351/350, 441/440, 10985/10976


POTE generator: ~65/49 = 489.256
[[Comma list]]: 2401/2400, 177147/175000


Map:  [&lt;1 13 17 13 32 9|, &lt;0 -28 -36 -25 -70 -13|]
{{Mapping|legend=1| 1 5 9 7 | 0 -22 -43 -27 }}


EDOs: 103, 130, 233, 363
: Mapping generators: ~2, ~10/9


Badness: 0.0217
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~10/9 = 186.343


= Cotritone =
{{Optimal ET sequence|legend=1| 45, 58, 103, 161, 586b, 747bc, 908bbc }}
Subgroup: 2.3.5.7
 
[[Badness]]: 0.125672
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 441/440, 43923/43750
 
Mapping: {{mapping| 1 5 9 7 12 | 0 -22 -43 -27 -55 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.345
 
Optimal ET sequence: {{Optimal ET sequence| 58, 103, 161, 425b, 586b, 747bc }}
 
Badness: 0.039962
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 243/242, 351/350, 441/440, 847/845
 
Mapping: {{mapping| 1 5 9 7 12 11 | 0 -22 -43 -27 -55 -47 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.347
 
Optimal ET sequence: {{Optimal ET sequence| 58, 103, 161, 425b, 586bf }}
 
Badness: 0.021849
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 243/242, 351/350, 441/440, 561/560, 847/845
 
Mapping: {{mapping| 1 5 9 7 12 11 3 | 0 -22 -43 -27 -55 -47 7 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.348
 
Optimal ET sequence: {{Optimal ET sequence| 58, 103, 161, 425b, 586bf }}
 
Badness: 0.020295
 
== Catafourth ==
{{See also| Sensipent family }}
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 78732/78125
 
{{Mapping|legend=1| 1 13 17 13 | 0 -28 -36 -25 }}
 
: Mapping generators: ~2, ~250/189
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~250/189 = 489.235
 
{{Optimal ET sequence|legend=1| 27, 76, 103, 130 }}
 
Badness: 0.079579
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 441/440, 78408/78125
 
Mapping: {{mapping| 1 13 17 13 32 | 0 -28 -36 -25 -70 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~250/189 = 489.252
 
Optimal ET sequence: {{Optimal ET sequence| 103, 130, 233, 363, 493e, 856be }}
 
Badness: 0.036785
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 243/242, 351/350, 441/440, 10985/10976
 
Mapping: {{mapping| 1 13 17 13 32 9 | 0 -28 -36 -25 -70 -13 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~65/49 = 489.256
 
Optimal ET sequence: {{Optimal ET sequence| 103, 130, 233, 363 }}
 
Badness: 0.021694
 
== Cotritone ==
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 390625/387072
[[Comma list]]: 2401/2400, 390625/387072


[[Mapping]]: [{{val|1 -13 -4 -4}}, {{val|0 30 13 14}}]
{{Mapping|legend=1| 1 17 9 10 | 0 -30 -13 -14 }}
 
: Mappping generators: ~2, ~10/7


[[POTE generator]]: ~7/5 = 583.385
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/5 = 583.385


{{Val list|legend=1| 35, 37, 72, 109, 181, 253 }}
{{Optimal ET sequence|legend=1| 35, 37, 72, 109, 181, 253 }}


[[Badness]]: 0.098322
[[Badness]]: 0.098322


== 11-limit ==
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 385/384, 1375/1372, 4000/3993
Comma list: 385/384, 1375/1372, 4000/3993


Mapping: [{{val|1 -13 -4 -4 2}}, {{val|0 30 13 14 3}}]
Mapping: {{mapping| 1 17 9 10 5 | 0 -30 -13 -14 -3 }}


POTE generator: ~7/5 = 583.387
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387


Vals: {{Val list| 35, 37, 72, 109, 181, 253 }}
Optimal ET sequence: {{Optimal ET sequence| 35, 37, 72, 109, 181, 253 }}


Badness: 0.032225
Badness: 0.032225


== 13-limit ==
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 169/168, 364/363, 385/384, 625/624
Comma list: 169/168, 364/363, 385/384, 625/624


Mapping: [{{val|1 -13 -4 -4 2 -7}}, {{val|0 30 13 14 3 22}}]
Mapping: {{mapping| 1 17 9 10 5 15 | 0 -30 -13 -14 -3 -22 }}


POTE generator: ~7/5 = 583.387
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387


Vals: {{Val list| 37, 72, 109, 181f }}
Optimal ET sequence: {{Optimal ET sequence| 37, 72, 109, 181f }}


Badness: 0.028683
Badness: 0.028683


[[Category:Theory]]
== Quasimoha ==
[[Category:Temperament]]
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Quasimoha]].''
[[Category:Breed]]
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 3645/3584
 
{{Mapping|legend=1| 1 1 9 6 | 0 2 -23 -11 }}
 
: Mapping generators: ~2, ~49/40
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 348.603
 
{{Optimal ET sequence|legend=1| 31, 117c, 148bc, 179bc }}
 
[[Badness]]: 0.110820
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 441/440, 1815/1792
 
Mapping: {{mapping| 1 1 9 6 2 | 0 2 -23 -11 5 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.639
 
Optimal ET sequence: {{Optimal ET sequence| 31, 86ce, 117ce, 148bce }}
 
Badness: 0.046181
 
== Lockerbie ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Lockerbie]].''
Lockerbie can be described as the {{nowrap| 103 & 270 }} temperament. Its generator is [[120/77]] or [[77/60]]. An obvious tuning is given by 270edo, but [[373edo]] and especially [[643edo]] work as well.
 
The temperament derives its name from the {{w|Lockerbie|Scottish town}}, where a {{w|Pan Am Flight 103|flight numbered 103}} crashed with 270 casualties, and the temperament is defined as 103 & 270, hence the name. The name is proposed by Eliora, who favours it due to simplicity, ease of pronunciation and relation to numbers 103 and 270.
 
Lockerbie also has a unique extension that adds the 41st harmonic such that the generator below 600 cents is also on the same step in 103 or 270 as [[41/32]], which means that [[616/615]] is tempered out.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, {{monzo| 24 13 -18 -1 }}
 
{{Mapping|legend=1| 1 -25 -16 -13 | 0 74 51 44 }}
 
: Mapping generators: ~2, ~3828125/2985984
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.0000, ~3828125/2985984 = 431.1071
: [[error map]]: {{val| 0.0000 -0.0270 +0.1502 -0.1120 }}
* [[CWE]]: ~2 = 1200.0000, ~3828125/2985984 = 431.1072
: error map: {{val| 0.0000 -0.0205 +0.1547 -0.1081 }}
 
{{Optimal ET sequence|legend=1| 103, 167, 270, 643, 913 }}
 
[[Badness]] (Smith): 0.0597
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 2401/2400, 3025/3024, 766656/765625
 
Mapping: {{mapping| 1 -25 -16 -13 -26 | 0 74 51 44 82 }}
 
Optimal tunings:
* CTE: ~2 = 1200.0000, ~77/60 = 431.1082
* CWE: ~2 = 1200.0000, ~77/60 = 431.1078
 
{{Optimal ET sequence|legend=0| 103, 167, 270, 643, 913, 1183e }}
 
Badness (Smith): 0.0262
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 1001/1000, 1716/1715, 3025/3024, 4225/4224
 
Mapping: {{mapping| 1 -25 -16 -13 -26 -6 | 0 74 51 44 82 27 }}
 
Optimal tunings:
* CTE: ~2 = 1200.0000, ~77/60 = 431.1085
* CWE: ~2 = 1200.0000, ~77/60 = 431.1069
 
{{Optimal ET sequence|legend=0| 103, 167, 270, 643, 913f }}
 
Badness (Smith): 0.0160
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 715/714, 936/935, 1001/1000, 1225/1224, 4225/4224
 
Mapping: {{mapping| 1 -25 -16 -13 -26 -6 -11 | 0 74 51 44 82 27 42 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~77/60 = 431.107
* CWE: ~2 = 1200.000, ~77/60 = 431.108
 
{{Optimal ET sequence|legend=0| 103, 167, 270 }}
 
Badness (Smith): 0.0210
 
=== 2.3.5.7.11.13.17.41 subgroup ===
Subgroup: 2.3.5.7.11.13.17.41
 
Comma list: 616/615, 715/714, 936/935, 1001/1000, 1225/1224, 4225/4224
 
Mapping: {{mapping| 1 -25 -16 -13 -26 -6 -11 5 | 0 74 51 44 82 27 42 1 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~41/32 = 431.107
* CWE: ~2 = 1200.000, ~41/32 = 431.111
 
{{Optimal ET sequence|legend=0| 103, 167, 270 }}
 
== Hemigoldis ==
: ''For the 5-limit version, see [[Diaschismic–gothmic equivalence continuum #Goldis]].''
 
Though fairly complex in the [[7-limit]], hemigoldis does a lot better in badness metrics than pure 5-limit goldis, and yet again has many possible extensions to other primes. For example, two periods minus six generators yields a "tetracot second" which can be interpreted as ~[[21/19]] to add prime 19 or perhaps more accurately ~[[31/28]] to add prime 7, or even simply as ~[[32/29]] to add prime 29, though the other two have the benefit of clearly connecting to the 7-limit representation. Note that again [[89edo]] is a possible tuning for combining it with flat nestoria and not appearing in the optimal ET sequence.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 549755813888/533935546875
 
{{Mapping|legend=1| 1 21 -9 2 | 0 -24 14 1 }}
 
: mapping generators: ~2, ~7/4
 
[[Optimal tuning]] ([[CWE]]): ~2 = 1200.000, ~7/4 = 970.690
 
{{Optimal ET sequence|legend=1| 21, 47b, 68, 157, 382bccd, 529bccd }}
 
[[Badness]] (Sintel): 4.40
 
== Surmarvelpyth ==
''Surmarvelpyth'' is named for the generator fifth, 675/448 being 225/224 (marvel comma) sharp of 3/2. It can be described as the 311 & 431 temperament, starting with the 7-limit to the 19-limit.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, {{monzo| 93 -32 -17 -1 }}
 
{{Mapping|legend=1| 1 43 -74 -25 | 0 -70 129 47 }}
 
: Mapping generators: ~2, ~675/448
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~675/448 = 709.9719
 
{{Optimal ET sequence|legend=1| 120, 191, 311, 742, 1053, 2848, 3901 }}
 
[[Badness]]: 0.202249
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 2401/2400, 820125/819896, 2097152/2096325
 
Mapping: {{mapping| 1 43 -74 -25 36 | 0 -70 129 47 -55 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~675/448 = 709.9720
 
Optimal ET sequence: {{Optimal ET sequence| 120, 191, 311, 742, 1053, 1795 }}
 
Badness: 0.052308
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 2401/2400, 4096/4095, 6656/6655, 24192/24167
 
Mapping: {{mapping| 1 43 -74 -25 36 25 | 0 -70 129 47 -55 -36 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9723
 
Optimal ET sequence: {{Optimal ET sequence| 120, 191, 311, 742, 1053, 1795f }}
 
Badness: 0.032503
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 2401/2400, 2601/2600, 4096/4095, 6656/6655, 8624/8619
 
Mapping: {{mapping| 1 43 -74 -25 36 25 -103 | 0 -70 129 47 -55 -36 181 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9722
 
Optimal ET sequence: {{Optimal ET sequence| 120g, 191g, 311, 431, 742, 1795f }}
 
Badness: 0.020995
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 2401/2400, 2601/2600, 2926/2925, 3136/3135, 3213/3211, 5985/5984
 
Mapping: {{mapping| 1 43 -74 -25 36 25 -103 -49 | 0 -70 129 47 -55 -36 181 90 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9722
 
Optimal ET sequence: {{Optimal ET sequence| 120g, 191g, 311, 431, 742, 1795f }}
 
Badness: 0.013771
 
== Notes ==
 
[[Category:Temperament collections]]
[[Category:Pages with mostly numerical content]]
[[Category:Breedsmic temperaments| ]] <!-- main article -->
[[Category:Breed| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]