16ed5/3: Difference between revisions
Major additions |
m Removing from Category:Edonoi using Cat-a-lot |
||
(55 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
'''16ed5/3''' | {{Infobox ET}} | ||
'''16ed5/3''' is the [[Ed5/3|equal division of the just major sixth]] into sixteen parts of 55.2724 [[cent]]s each, corresponding to 21.7106[[edo]]. It is very closely related to the [[Escapade family|escapade temperament]]. It is vaguely equivalent to [[22edo]]. | |||
It very accurately approximates a number of low complexity just intervals, such as: 4/3 (<1¢), 5/4 (<1¢), 11/8 (<2¢), 11/10 (<1¢), 16/15 (<2¢), and 25/16 (<2¢). It also approximates the just fifth and octave to within | It very accurately approximates a number of low complexity just intervals, such as: [[4/3]] (<1¢), [[5/4]] (<1¢), [[11/8]] (<2¢), [[11/10]] (<1¢), [[16/15]] (<2¢), and [[25/16]] (<2¢). It also approximates the [[3/2|just fifth]] and [[2/1|octave]] to within 17¢, making it a flexible non-octave scale. Notably, having a period of [[5/3]], the diatonic minor third ([[6/5]]) is the period-reduced diatonic octave. This means both are approximated identically (16¢ sharp). | ||
== Harmonics == | |||
{{Harmonics in equal|16|5|3}} | |||
== Intervals == | == Intervals == | ||
16ed5/3 can be notated using steps 7 (~5/4) and 9 (~4/3) as generators, as these are accurate to within 0.6¢. The resulting scale is a heptatonic 2L 5s (similar to the octave repeating antidiatonic). | 16ed5/3 can be notated using steps 7 (~5/4) and 9 (~4/3) as generators, as these are accurate to within 0.6¢. The resulting scale is a heptatonic 2L 5s (similar to the octave repeating antidiatonic). It can also be notated using the fifth-generated [[Blackcomb]] temperament as discussed in [[#Temperaments]], which lines up quite nicely with diatonic notation, aside from the "minor second" being in neutral second range and "perfect fourth" being in superfourth range. | ||
{| class="wikitable" | {| class="wikitable center-all right-2" | ||
!Degree | ! Degree | ||
!Cents | ! Cents | ||
! | ! 5/3.4/3.11/6.31/18 subgroup interval | ||
! | ! Other interpretations | ||
! | ! 2L 5s<5/3> mos-interval | ||
! | ! 2L 5s<5/3> notation | ||
! 1L 4s<5/3> ([[Blackcomb]][5]) interval | |||
! 1L 4s<5/3> ([[Blackcomb]][5]) notation | |||
! Diatonic interval | |||
|- | |- | ||
|'''0''' | | '''0''' | ||
|'''0''' | | '''0.0000''' | ||
|'''1''' | | '''1/1''' | ||
|'''unison''' | | | ||
|'''unison''' | | '''unison''' | ||
|''' | | '''E''' | ||
| '''unison''' | |||
| '''C''' | |||
| '''unison''' | |||
|- | |- | ||
|1 | | 1 | ||
|55.2724 | | 55.2724 | ||
|31/30, 33/32 | | 31/30, 32/31, 33/32 | ||
|aug unison | | 36/35 | ||
| | | aug unison | ||
| | | E# | ||
| aug unison | |||
| C# | |||
| quartertone | |||
|- | |- | ||
|2 | | 2 | ||
|110.5448 | | 110.5448 | ||
|16/15 | | 16/15, 33/31 | ||
|min mos2nd | | 21/20 | ||
| | | min mos2nd | ||
| | | Fb | ||
| double-aug unison, dim second | |||
| Cx, Dbb | |||
| minor second | |||
|- | |- | ||
|3 | | 3 | ||
|165.8173 | | 165.8173 | ||
|11/10 | | 11/10 | ||
|maj mos2nd | | | ||
| | | maj mos2nd | ||
| | | F | ||
| minor second | |||
| Db | |||
| neutral second | |||
|- | |- | ||
|4 | | 4 | ||
|221.0897 | | 221.0897 | ||
|8/7, 17/15 | | 25/22 | ||
|min mos3rd | | 8/7, 17/15 | ||
|major second | | min mos3rd | ||
| | | F#/Gb | ||
| major second | |||
| D | |||
| major second | |||
|- | |- | ||
|5 | | 5 | ||
|276.3621 | | 276.3621 | ||
|7/6, 20/17 | | 75/64, 88/75 | ||
|maj mos3rd | | 7/6, 20/17 | ||
|subminor third | | maj mos3rd | ||
| G | |||
| aug second | |||
| D# | |||
| subminor third | |||
|- | |- | ||
|6 | | 6 | ||
|331.6345 | | 331.6345 | ||
|6/5, 17/14 | | 40/33, 75/62 | ||
|dim mos4th | | 6/5, 17/14 | ||
|minor third | | dim mos4th | ||
| | | G#/Ab | ||
| minor third | |||
| Eb | |||
| minor third | |||
|- | |- | ||
| | | 7 | ||
|''386.9069'' | | ''386.9069'' | ||
|''5/4'' | | ''5/4'' | ||
|''perf mos4th'' | | | ||
|major third | | ''perf mos4th'' | ||
| | | A | ||
| major third | |||
| E | |||
| major third | |||
|- | |- | ||
|8 | | 8 | ||
|442.1794 | | 442.1794 | ||
|9/7, 22/17 | | 31/24, 40/31 | ||
|aug mos4th | | 9/7, 35/27, 22/17 | ||
| | | aug mos4th | ||
| | | A#/Bb | ||
| aug third | |||
| E# | |||
| supermajor third | |||
|- | |- | ||
| | | 9 | ||
|''497.4517'' | | ''497.4517'' | ||
|4/3 | | ''4/3'' | ||
|''perf mos5th'' | | | ||
| | | ''perf mos5th'' | ||
| | | B | ||
| dim fourth | |||
| Fb | |||
| just fourth | |||
|- | |- | ||
|10 | | 10 | ||
|552.7242 | | 552.7242 | ||
|11/8 | | 11/8, 62/45 | ||
|aug mos5th | | 25/18, 18/13 | ||
| | | aug mos5th | ||
| | | B# | ||
| perfect fourth | |||
| F | |||
| wide fourth | |||
|- | |- | ||
|11 | | 11 | ||
|607.9966 | | 607.9966 | ||
|10/7 | | 44/31, 64/45 | ||
|min mos6th | | 10/7, 17/12 | ||
|large tritone | | min mos6th | ||
| Cb | |||
| aug fourth | |||
| F# | |||
| large tritone | |||
|- | |- | ||
|12 | | 12 | ||
|663. | | 663.2690 | ||
|22/15 | | 22/15 | ||
|maj mos6th | | 72/49 | ||
| | | maj mos6th | ||
| | | C | ||
| dim fifth | |||
| Gb | |||
| narrow fifth | |||
|- | |- | ||
|13 | | 13 | ||
|718. | | 718.5415 | ||
|3/2 | | 50/33 | ||
|min mos7th | | 3/2 | ||
| | | min mos7th | ||
| | | C#/Db | ||
| perfect fifth | |||
| G | |||
| acute fifth | |||
|- | |- | ||
|14 | | 14 | ||
|773.8129 | | 773.8129 | ||
|25/16 | | 25/16 | ||
|maj mos7th | | | ||
| | | maj mos7th | ||
|G | | D | ||
| aug fifth | |||
| G# | |||
| subminor sixth | |||
|- | |- | ||
|15 | | 15 | ||
|829.0863 | | 829.0863 | ||
|8/5, 13/8 | | 50/31 | ||
|dim mos8ave | | 8/5, 13/8 | ||
| | | dim mos8ave | ||
| | | D#/Eb | ||
| dim sixth | |||
| Cb | |||
| minor sixth | |||
|- | |- | ||
|'''16''' | | '''16''' | ||
|'''884.3587''' | | '''884.3587''' | ||
|'''5/3''' | | '''5/3''' | ||
|'''mosoctave''' | | | ||
|''' | | '''mosoctave''' | ||
|''' | | '''E''' | ||
| '''perfect sixth''' | |||
| '''C''' | |||
| '''major sixth''' | |||
|- | |- | ||
|17 | | 17 | ||
|939.6311 | | 939.6311 | ||
|12/7, 19/11 | | 31/18, 55/32 | ||
|aug mos8ave | | 12/7, 19/11 | ||
| | | aug mos8ave | ||
| | | E# | ||
| aug sixth | |||
| C# | |||
| supermajor sixth | |||
|- | |- | ||
|18 | | 18 | ||
|994.9035 | | 994.9035 | ||
|16/9 | | 16/9, 55/31 | ||
|min mos9th | | 7/4 | ||
| | | min mos9th | ||
| | | Fb | ||
| double-aug sixth, dim seventh | |||
| Cx, Dbb | |||
| minor seventh | |||
|- | |- | ||
|19 | | 19 | ||
|1050.1760 | | 1050.1760 | ||
|11/6 | | 11/6 | ||
|maj mos9th | | | ||
| | | maj mos9th | ||
| | | F | ||
| minor seventh | |||
| Db | |||
| neutral seventh | |||
|- | |- | ||
|20 | | 20 | ||
|1105.4484 | | 1105.4484 | ||
| | | 176/93, 125/66, 256/135 | ||
|min mos10th | | 40/21, (27/14), 17/9 | ||
|major seventh | | min mos10th | ||
| | | F#/Gb | ||
| major seventh | |||
| D | |||
| major seventh | |||
|- | |- | ||
|21 | | 21 | ||
|1160.7208 | | 1160.7208 | ||
|35/18, 43/22 | | 88/45, 125/64 | ||
|maj mos10th | | 35/18, 43/22 | ||
|narrow octave | | maj mos10th | ||
| G | |||
| aug seventh | |||
| D# | |||
| narrow octave | |||
|- | |- | ||
|22 | | 22 | ||
|1215.9932 | | 1215.9932 | ||
|2/1 | | 200/99, 121/60, 125/62 | ||
|dim mos11th | | 2/1 | ||
|octave | | dim mos11th | ||
| | | G#/Ab | ||
| minor octave | |||
| Eb | |||
| octave | |||
|} | |} | ||
These intervals are close to a few other related | |||
{| class="wikitable" | These intervals are close to a few other related scales: | ||
{| class="wikitable left-all" | |||
! | ! | ||
! | ! [[22edo]] | ||
! | ! [[7ed5/4]] | ||
![[43ed4]] | !23ed18\17 | ||
! | ! 16ed5/3 | ||
! [[9ed4/3]] (Noleta) | |||
! [[43ed4]] | |||
! [[34edt]] | |||
! [[21edo]] | |||
|- | |- | ||
|1 | | 1 | ||
|54.54545 | | 54.54545 | ||
|55.2724 | | 55.188 | ||
|55. | |55.2429 | ||
|57.1429 | | ''55.2724'' | ||
| 55.338 | |||
| 55.8140 | |||
| 55.9399 | |||
| 57.1429 | |||
|- | |- | ||
|2 | | 2 | ||
|109.0909 | | 109.0909 | ||
|110.5448 | | 110.375 | ||
|111.6729 | |110.4859 | ||
|114.2857 | | ''110.5448'' | ||
| 110.677 | |||
| 111.6729 | |||
| 111.8797 | |||
| 114.2857 | |||
|- | |- | ||
|3 | | 3 | ||
|163.6364 | | 163.6364 | ||
|165.8173 | | 165.563 | ||
|167.4419 | |165.7288 | ||
|171.4286 | | ''165.8173'' | ||
| 166.015 | |||
| 167.4419 | |||
| 167.8196 | |||
| 171.4286 | |||
|- | |- | ||
|4 | | 4 | ||
|218.1818 | | 218.1818 | ||
|221.0897 | | 220.751 | ||
|223.2558 | |220.9718 | ||
|228.5714 | | ''221.0897'' | ||
| 221.353 | |||
| 223.2558 | |||
| 223.7594 | |||
| 228.5714 | |||
|- | |- | ||
|5 | | 5 | ||
|272.7273 | | 272.7273 | ||
|276.3621 | | 275.938 | ||
|279.0698 | |276.2147 | ||
|285.7143 | | ''276.3621'' | ||
| 276.692 | |||
| 279.0698 | |||
| 279.6993 | |||
| 285.7143 | |||
|- | |- | ||
|6 | | 6 | ||
|327.2727 | | 327.2727 | ||
|331.6345 | | 331.126 | ||
|334.8837 | |331.4576 | ||
|342.8571 | | ''331.6345'' | ||
| 332.030 | |||
| 334.8837 | |||
| 335.6391 | |||
| 342.8571 | |||
|- | |- | ||
|7 | | 7 | ||
|381.8182 | | 381.8182 | ||
|386.9069 | | 386.314 | ||
|390.6977 | |386.7006 | ||
|400 | | ''386.9069'' | ||
| 387.368 | |||
| 390.6977 | |||
| 391.5790 | |||
| 400 | |||
|- | |- | ||
|8 | | 8 | ||
|436.3636 | | 436.3636 | ||
|442.1794 | | 441.501 | ||
|446.5116 | |441.9435 | ||
|457.1429 | | ''442.1794'' | ||
| 442.707 | |||
| 446.5116 | |||
| 447.5188 | |||
| 457.1429 | |||
|- | |- | ||
|9 | | 9 | ||
|490.9091 | | 490.9091 | ||
|497.4517 | | 496.689 | ||
|502.3256 | |497.1865 | ||
|514.2857 | | ''497.4517'' | ||
| 498.045 | |||
| 502.3256 | |||
| 503.4587 | |||
| 514.2857 | |||
|- | |- | ||
|10 | | 10 | ||
|545. | | 545.5455 | ||
|552.7242 | | 551.877 | ||
|558.1395 | |552.4294 | ||
|571.4286 | | ''552.7242'' | ||
| 553.383 | |||
| 558.1395 | |||
| 559.3985 | |||
| 571.4286 | |||
|- | |- | ||
|11 | | 11 | ||
|600 | | 600 | ||
|607.9966 | | 607.064 | ||
|613.9535 | |607.6723 | ||
|628.5714 | | ''607.9966'' | ||
| 608.722 | |||
| 613.9535 | |||
| 615.3384 | |||
| 628.5714 | |||
|- | |- | ||
|12 | | 12 | ||
|654. | | 654.5455 | ||
|663.269 | | 662.252 | ||
|669.7674 | |662.9153 | ||
|685.7143 | | ''663.269'' | ||
| 664.060 | |||
| 669.7674 | |||
| 671.2782 | |||
| 685.7143 | |||
|- | |- | ||
|13 | | 13 | ||
|709.0909 | | 709.0909 | ||
|718. | | 717.440 | ||
|725.5814 | |718.1582 | ||
|742.8571 | | ''718.5415'' | ||
| 719.398 | |||
| 725.5814 | |||
| 727.2181 | |||
| 742.8571 | |||
|- | |- | ||
|14 | | 14 | ||
|763.6364 | | 763.6364 | ||
|773.8129 | | 772.627 | ||
|781. | |773.4011 | ||
|800 | | ''773.8129'' | ||
| 774.737 | |||
| 781.3954 | |||
| 783.1579 | |||
| 800 | |||
|- | |- | ||
|15 | | 15 | ||
|818.1818 | | 818.1818 | ||
|829.0863 | | 827.815 | ||
|837.7209 | |828.6441 | ||
|857.1429 | | ''829.0863'' | ||
| 830.075 | |||
| 837.7209 | |||
| 839.0978 | |||
| 857.1429 | |||
|- | |- | ||
|16 | | 16 | ||
|872.7273 | | 872.7273 | ||
|884.3587 | | 883.003 | ||
|893.0233 | |883.8870 | ||
|914.2857 | | ''884.3587'' | ||
| 885.413 | |||
| 893.0233 | |||
| 895.0376 | |||
| 914.2857 | |||
|} | |} | ||
== MOS Scales == | == MOS Scales == | ||
16edVI supports the same [[MOS scale | 16edVI supports the same [[MOS scale]]s as [[16edo]], as such it contains the following scales: | ||
{| class="wikitable" | {| class="wikitable center-all left-3" | ||
!Periods | ! Periods <br> per octave | ||
per octave | ! Generator | ||
!Generator | ! Pattern | ||
!Pattern | |||
|- | |- | ||
|1 | | 1 | ||
|1\16 | | 1\16 | ||
|1L | | 1L Ns | ||
|- | |- | ||
|1 | | 1 | ||
|3\16 | | 3\16 | ||
|1L 4s, 5L 1s | | 1L 4s, 5L 1s | ||
|- | |- | ||
|1 | | 1 | ||
|5\16 | | 5\16 | ||
|3L 4s, 3L 7s | | 3L 4s, 3L 7s | ||
|- | |- | ||
|1 | | 1 | ||
|7\16 | | 7\16 | ||
|2L 5s, 7L 2s | | 2L 5s, 7L 2s | ||
|- | |- | ||
|2 | | 2 | ||
|1\16 | | 1\16 | ||
|2L 8s, 2L 10s, 2L 12s | | 2L 8s, 2L 10s, 2L 12s | ||
|- | |- | ||
|2 | | 2 | ||
|3\16 | | 3\16 | ||
|4L 2s, 6L 4s | | 4L 2s, 6L 4s | ||
|- | |- | ||
|4 | | 4 | ||
|1\16 | | 1\16 | ||
|4L 4s, 4L 8s | | 4L 4s, 4L 8s | ||
|} | |} | ||
For the 2L 5s scale, the genchain is this: | For the 2L 5s scale, the genchain is this: | ||
{| class="wikitable" | {| class="wikitable center-all" | ||
| F# | |||
|F# | | C# | ||
|C# | | G# | ||
|G# | | D# | ||
|D# | | A# | ||
|A# | | E# | ||
|E# | | B# | ||
|B | | F | ||
|F | | C | ||
|C | | G | ||
|G | | D | ||
|D | | A | ||
|A | | '''E''' | ||
|E | | B | ||
| | | Fb | ||
|Fb | | Cb | ||
|Cb | | Gb | ||
|Gb | | Db | ||
|Db | | Ab | ||
|Ab | | Eb | ||
|Eb | | Db | ||
| | | Fbb | ||
|Fbb | | Cbb | ||
|Cbb | | Gbb | ||
|Gbb | | Dbb | ||
|- | |- | ||
|A2 | | A2 | ||
|A6 | | A6 | ||
|A3 | | A3 | ||
|A7 | | A7 | ||
| | | A4 | ||
|A1 | | A1 | ||
| | | A5 | ||
|M2 | | M2 | ||
|M6 | | M6 | ||
|M3 | | M3 | ||
|M7 | | M7 | ||
| | | P4 | ||
|P1 | | '''P1''' | ||
| | | P5 | ||
|m2 | | m2 | ||
|m6 | | m6 | ||
|m3 | | m3 | ||
|m7 | | m7 | ||
| | | d4 | ||
|d1 | | d1 | ||
| | | d5 | ||
|d2 | | d2 | ||
|d6 | | d6 | ||
|d3 | | d3 | ||
|d7 | | d7 | ||
|} | |} | ||
[[ | |||
== Commas == | |||
Depending on your mapping, 16ed5/3 can be said to temper a number of commas, including the [[diaschisma]], the [[marvel comma]], [[64/63|Archytas' comma]], and the [[jubilisma]], all discussed in the temperaments section. In addition, being an even division of the 5/3, it tempers the [[sensamagic comma]], as the half mosoctave is midway between [[9/7]] and [[35/27]]. This is analogous to the tritone in 2n edo systems. The [[keema]] is tempered due to the septimal interpretation of the diatonic sevenths, and the [[mothwellsma]] is tempered by two major mos3rds ([[7/6]]) resulting in an augmented mos5th ([[11/8]]). | |||
== Temperaments == | |||
The 2L 5s scale is generated by a very accurate [[4/3]], such that two of them wind up on a near exact [[16/9]], which period-reduces to [[16/15]] (the minor mossecond). This interval taken 2 times is approximated by an [[8/7]], and taken 3 times is approximated by a [[6/5]] (or [[2/1]] in the next mosoctave). These 2 equivalencies result in two tempered commas: the marvel comma - [[225/224]] ((<sup>16</sup>/<sub>15</sub>)<sup>2</sup>=(<sup>8</sup>/<sub>7</sub>)), and the diaschisma - [[2048/2025]] ((<sup>16</sup>/<sub>15</sub>)<sup>3</sup>=(<sup>6</sup>/<sub>5</sub>)). | |||
The diaschisma can also be tempered by taking 5 generators to mean a [[3/2]] ((<sup>4</sup>/<sub>3</sub>)<sup>5</sup>=(<sup>3</sup>/<sub>2</sub>)·(<sup>5</sup>/<sub>3</sub>)<sup>2</sup>), while the marvel comma can also be tempered with a stack of 3 generators, making a [[10/7]] ((<sup>4</sup>/<sub>3</sub>)<sup>3</sup>=(<sup>10</sup>/<sub>7</sub>)·(<sup>5</sup>/<sub>3</sub>)). | |||
The tempered marvel comma also means that the two large [[tritone]]s ([[64/45|pental]] and [[10/7|septimal]]) are addressed by the same scale step. The tempered diaschisma, on the other hand, means that both pental tritones are also addressed by the same scale step. | |||
Both of the 7-limit approaches also temper Archytas' comma as a result of equating the [[16/9]] with [[7/4]], and the jubilisma ([[50/49]]) due to tritone equivalence. These are relatively large commas, given the step size (about half, and 7/11ths respectively). | |||
This shows the close relationships with [[srutal]] and [[pajara]] octave temperaments. In 16ed5/3's case, there is a close equivalence to [[22edo]]'s pajara tuning. | |||
As 3 semitones make a period-reduced octave, and it alludes to tritone tempering, [[User:Ayceman|I]] propose the name '''tristone''' for the basic [[Diaschismic family|diaschismic temperament]], based on the 16/15 to 6/5 relationship, as well as the following variants and extensions: | |||
=== Tristone === | |||
[[Subgroup]]: 5/3.20/9.10/3 | |||
[[Comma]] list: 2048/2025 | |||
[[POL2]] generator: ~5/4 = 389.8224 | |||
[[Mapping]]: [⟨1 2 5], ⟨0 -1 -6]] | |||
TE [[complexity]]: 1.988720 | |||
[[RMS temperament measures|RMS]] error: 2.228679 cents | |||
[[Optimal ET sequence]]: 9ed5/3, 16ed5/3, 25ed5/3 | |||
==== Tridistone ==== | |||
[[Subgroup]]: 5/3.20/9.10/3.1000/189 | |||
[[Comma]] list: 2048/2025, 225/224, 64/63, 50/49 | |||
[[POL2]] generator: ~5/4 = 389.6140 | |||
[[Mapping]]: [⟨1 2 5 5], ⟨0 -1 -6 -4]] | |||
TE [[complexity]]: 1.724923 | |||
[[RMS temperament measures|RMS]] error: 8.489179 cents | |||
[[Optimal ET sequence]]: 9ed5/3, 16ed5/3 | |||
=== Metatristone === | |||
[[Subgroup]]: 5/3.20/9.5/2 | |||
[[Comma]] list: 2048/2025 | |||
[[POL2]] generator: ~5/4 = 390.5180 | |||
[[Mapping]]: [⟨1 2 4], ⟨0 -1 -5]] | |||
TE [[complexity]]: 2.192193 | |||
[[RMS temperament measures|RMS]] error: 2.021819 cents | |||
[[Optimal ET sequence]]: 9ed5/3, 16ed5/3, 25ed5/3 | |||
==== Metatridistone ==== | |||
[[Subgroup]]: 5/3.20/9.5/2.250/63 | |||
[[Comma]] list: 2048/2025, 225/224, 64/63, 50/49 | |||
[[POL2]] generator: ~5/4 = 390.5430 | |||
[[Mapping]]: [⟨1 2 4 4], ⟨0 -1 -5 -3]] | |||
TE [[complexity]]: 1.895168 | |||
[[RMS temperament measures|RMS]] error: 7.910273 cents | |||
[[Optimal ET sequence]]: 9ed5/3, 16ed5/3 | |||
'''16ed5/3''' also supports [[Blackcomb]] temperament which is built on [[5/4]] and [[3/2]] in a very similar way to octave-repeating [[meantone]] but is less accurate. Blackcomb tempers out the comma [[250/243]], the amount by which 3 [[3/2]]'s exceed [[5/4]] sixth-reduced, in the 5/3.2.3 subgroup (equal to the [[5-limit]]). | |||
[[Category:Nonoctave]] | [[Category:Nonoctave]] |